首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Inclusion of feed efficiency traits into the dairy cattle breeding programmes will require considering early lactation energy status to avoid deterioration in health and fertility of dairy cows. In this regard, energy status indicator (ESI) traits, for example, blood metabolites or milk fatty acids (FAs), are of interest. These indicators can be predicted from routine milk samples by mid-IR reflectance spectroscopy (MIR). In this study, we estimated genetic variation in ESI traits and their genetic correlation with female fertility in early lactation. The data consisted of 37 424 primiparous Nordic Red Dairy cows with milk test-day records between 8 and 91 days in milk (DIM). Routine test-day milk samples were analysed by MIR using previously developed calibration equations for blood plasma non-esterified FA (NEFA), milk FAs, milk beta-hydroxybutyrate (BHB) and milk acetone concentrations. Six ESI traits were considered and included: plasma NEFA concentration (mmol/l) either predicted by multiple linear regression including DIM, milk fat to protein ratio (FPR) and FAs C10:0, C14:0, C18:1 cis-9, C14:0 * C18:1 cis-9 (NEFAFA) or directly from milk MIR spectra (NEFAMIR), C18:1 cis-9 (g/100 ml milk), FPR, BHB (mmol/l milk) and acetone (mmol/l milk). The interval from calving to first insemination (ICF) was considered as the fertility trait. Data were analysed using linear mixed models. Heritability estimates varied during the first three lactation months from 0.13 to 0.19, 0.10 to 0.17, 0.09 to 0.14, 0.07 to 0.10, 0.13 to 0.17 and 0.13 to 0.18 for NEFAMIR, NEFAFA, C18:1 cis-9, FPR, milk BHB and acetone, respectively. Genetic correlations between all ESI traits and ICF were from 0.18 to 0.40 in the first lactation period (8 to 35 DIM), in general somewhat lower (0.03 to 0.43) in the second period (36 to 63 DIM) and decreased clearly (−0.02 to 0.19) in the third period (64 to 91 DIM). Our results indicate that genetic variation in energy status of cows in early lactation can be determined using MIR-predicted indicators. In addition, the markedly lower genetic correlation between ESI traits and fertility in the third lactation month indicated that energy status should be determined from the first test-day milk samples during the first 2 months of lactation.  相似文献   

2.
The aim of this study was to determine the effect of butaphosphan and cyanocobalamin (BTPC) supplementation on plasma metabolites and milk production in postpartum dairy cows. A total of fifty-two Holstein cows were randomly assigned to receive either: (1) 10 ml of saline (NaCl 0.9%, control group); (2) 1000 mg of butaphosphan and 0.5 mg of cyanocobalamin (BTPC1 group); and (3) 2000 mg of butaphosphan and 1.0 mg of cyanocobalamin (BTPC2 group). All cows received injections every 5 days from calving to 20 days in milk (DIM). Blood samples were collected every 15 days from calving until 75 DIM to determine serum concentration of glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), cholesterol, urea, calcium (Ca), phosphorus (P), magnesium (Mg), aminotransferase aspartate (AST) and γ-glutamyltransferase (GGT). The body condition score (BCS) and milk production were evaluated from calving until 90 DIM. Increasing doses of BTPC caused a linear reduction in plasma concentrations of NEFA and cholesterol. Supplementation of BTPC also reduced concentrations of BHB but it did not differ between the two treatment doses. Milk yield and milk protein had a linear increase with increasing doses of BTPC. A quadratic effect was detected for milk fat and total milk solids according to treatment dose, and BTPC1 had the lowest mean values. Concentrations of glucose, urea, P, Mg, AST, GGT, milk lactose and BCS were not affected by treatment. These results indicate that injections of BTPC during the early postpartum period can reduce NEFA and BHB concentrations and increase milk production in Holstein cows.  相似文献   

3.
Most dairy cows experience negative energy balance (NEB) in early lactation because energy demand for milk synthesis is not met by energy intake. Excessive NEB may lead to metabolic disorders and impaired fertility. To optimize herd management, it is useful to detect cows in NEB in early lactation, but direct calculation of NEB is not feasible in commercial herds. Alternative methods rely on fat-to-protein ratio in milk or on concentrations of non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in blood. Here, we considered methods to assess energy balance (EB) of dairy cows based on the fatty acid (FA) composition in milk. Short- and medium-chain FAs (primarily, C14:0) are typically synthesized de novo in the mammary gland and their proportions in milk fat decrease during NEB. Long-chain FAs C18:0 and C18:1 cis-9 are typically released from body fat depots during NEB, and their proportions increase. In this study, these FAs were routinely determined by Fourier-transform infrared spectroscopy (FTIR) of individual milk samples. We performed an experiment on 85 dairy cows in early lactation, fed the same concentrate ration of up to 5 kg per day and forage ad libitum. Daily milk yield and feed intake were automatically recorded. During lactation weeks 2, 4, and 6 after calving, two milk samples were collected for FTIR spectroscopy, Tuesday evening and Wednesday morning, blood plasma samples were collected Thursday morning. Net energy content in feed and net energy required for maintenance and lactation were estimated to derive EB, which was used to compare alternative indicators of severe NEB. Linear univariate models for EB based on NEFA concentration (deviance explained = 0.13) and other metabolites in blood plasma were outperformed by models based on concentrations of metabolites in milk: fat (0.27), fat-to-protein ratio (0.18), BHB (0.20), and especially C18:0 (0.28) and C18:1 cis-9 (0.39). Analysis of generalized additive models (GAM) revealed that models based on milk variables performed better than those based on blood plasma (deviance explained 0.46 vs. 0.21). C18:0 and C18:1 cis-9 also performed better in severe NEB prediction for EB cut-off values ranging from −50 to 0 MJ NEL/d. Overall, concentrations of C18:0 and C18:1 cis-9 in milk, milk fat, and milk BHB were the best variables for early detection of cows in severe NEB. Thus, milk FA concentrations in whole milk can be useful to identify NEB in early-lactation cows.  相似文献   

4.
Improving reproductive performance is one of the most important factors affecting the profitability of dairy herds. This study investigated the effect of feeding a high starch (HS) diet and body condition score (BCS) at calving on blood metabolites, fertility and ovarian function and milk production in Holstein dairy cows. One hundred seventy-four multiparous cows were fed common close-up and early lactation diets during the first 15 days in milk (DIM). Cows were randomly assigned to 1 of 2 experimental diets from 16 until 50 DIM (n = 87 per group); normal starch (228 g/kg diet DM; NS) or HS (270 g/kg diet DM; HS) diets. Each treatment group was further subdivided based on BCS at calving as normal BCS (BCS ⩽ 3.5; normal BCS (NBCS); n = 45) or high BCS (HBCS) (BCS ⩾ 3.75; HBCS; n = 42). A significant difference was detected for increased milk production (47.24 v. 44.55 kg/day) and decreased milk fat (33.93 v. 36.33 g/kg) in cows fed HS or NS, respectively. Plasma glucose and insulin concentrations were significantly higher in cows fed the HS compared to the NS diet. Diets significantly affected DIM at first artificial insemination (AI, 79.51 ± 3.83 v. 90.40 ± 3.83 days for cows fed HS and NS diets, respectively). High BCS groups had greater milk fat content and elevated plasma nonesterified fatty acids (NEFA), β hydroxybutyrate (BHB) and bilirubin concentrations. In general, feeding higher starch diets to normal BCS cows during the first 50 DIM improved productive and reproductive performance of early-lactating dairy cows.  相似文献   

5.
Little is known about cheese-making efficiency at the individual cow level, so our objective was to study the effects of herd productivity, individual herd within productivity class and breed of cow within herd by producing, then analyzing, 508 model cheeses from the milk of 508 cows of six different breeds reared in 41 multi-breed herds classified into two productivity classes (high v. low). For each cow we obtained six milk composition traits; four milk nutrient (fat, protein, solids and energy) recovery traits (REC) in curd; three actual % cheese yield traits (%CY); two theoretical %CYs (fresh cheese and cheese solids) calculated from milk composition; two overall cheese-making efficiencies (% ratio of actual to theoretical %CYs); daily milk yield (dMY); and three actual daily cheese yield traits (dCY). The aforementioned phenotypes were analyzed using a mixed model which included the fixed effects of herd productivity, parity, days in milk (DIM) and breed; the random effects were the water bath, vat, herd and residual. Cows reared in high-productivity herds yielded more milk with higher nutrient contents and more cheese per day, had greater theoretical %CY, and lower cheese-making efficiency than low-productivity herds, but there were no differences between them in terms of REC traits. Individual herd within productivity class was an intermediate source of total variation in REC, %CY and efficiency traits (10.0% to 17.2%), and a major source of variation in milk yield and dCY traits (43.1% to 46.3%). Parity of cows was an important source of variation for productivity traits, whereas DIM affected almost all traits. Breed within herd greatly affected all traits. Holsteins produced more milk, but Brown Swiss cows produced milk with higher actual and theoretical %CYs and cheese-making efficiency, so that the two large-framed breeds had the same dCY. Compared with the two large-framed breeds, the small Jersey cows produced much less milk, but with greater actual and theoretical %CYs, similar efficiencies and a slightly lower dCY. Compared with the average of the specialized dairy breeds, the three dual-purpose breeds (Simmental and the local Rendena and Alpine Grey) had, on average, similar dMY, lower actual and theoretical %CY, similar fat and protein REC, and slightly greater cheese-making efficiency.  相似文献   

6.
Dairy products are the major source of odd- and branched-chain fatty acids (OBCFAs), a group of nutrients with emerging health benefits. The animal diet is known to influence milk fat OBCFAs of dairy cows; however, little is known about the effects of physiological factors. The objective of this study was to investigate the effects of parity and lactation stage on OBCFAs in milk fat of dairy cows. Holstein dairy cows (n = 157) were selected according to parity (first, second, third, or greater) and days in milk (DIM) (≤21 DIM, 21 < DIM ≤ 100, 100 < DIM ≤ 200, >200 DIM). All cows were fed the same total mixed ration for three weeks. Milk samples were collected during the last three days of each lactation stage for fatty acid (FA) analyses via gas chromatography. Results showed that first- and second-parity cows displayed significantly higher proportions and yields of iso-14:0, iso-15:0, iso-16:0, total iso-FA, and total branched-chain FA (P < 0.05) compared with other parities. The proportions of C17:0 and C17:1 cis-9 were also greater in first-parity cows (P < 0.05), while the yields of C17:0 and C17:1 cis-9 were similar among different parities (P > 0.05). The proportions of total OBCFAs were greater in first- and second-parity cows (P < 0.05), whereas the highest yield was observed in second-parity cows. Lactation dairy cows in ≤ 21 DIM group displayed lower proportions of iso-13:0, anteiso-13:0, C13:0, iso-14:0, C15:0, iso-16:0, total iso-FA, and total OBCFAs compared with that of the other groups (P < 0.05), and also lower yields of iso-14:0 and iso-16:0 (P < 0.05). In contrast, C17:0 and C17:1 cis-9 proportions and yields were higher in dairy cows with ≤ 21 DIM (P < 0.05). Iso-17:0 and anteiso-17:0 were not affected by lactation stage (P > 0.05). Taken together, our data showed that both parity and lactation stage have considerable effects on milk fat OBCFAs of dairy cows. In summary, first- and second-parity cows had higher milk OBCFAs compared with later parity cows, and OBCFAs with medium chain lengths were lower in dairy cows with ≤ 21 DIM, while C17:0 and C17:1 cis-9 were higher. These findings show that milk OBCFA contents are differentially modulated by physiological state. They will be useful in future studies that seek to alter OBCFA composition of Holstein dairy cow milk fats.  相似文献   

7.
Daily milk production, and fluctuations therein, can provide information on health and resilience of dairy cows. We studied variance and autocorrelation of deviations in daily milk yield in relation to the occurrence of clinical mastitis (no, early or later in lactation). Individual lactation curves were fitted to 305-d lactations of 414 dairy cows using quantile regression. Log-transformed variance (lnVar) and autocorrelation of the quantile residuals of daily milk yield (predicted – observed) were evaluated for intervals until 30 and until 305 days in milk (DIM). Cows were classified as having no mastitis (n = 249), early mastitis that first occurred before 30 DIM (n = 29); or later mastitis (n = 136). Subsequently, linear models were used to assess effects of mastitis and parity class (primiparous or multiparous) on lnVar and autocorrelations; and logistic regression analyses were performed to predict mastitis from lnVar or autocorrelation and parity. From 10 to 30 DIM, lnVar was greater for cows with early mastitis than for cows with no or late mastitis, and autocorrelation tended to be lower for cows with early mastitis than for cows with no mastitis. The lnVar and autocorrelation from 10 to 30 DIM were not predictive of late mastitis. From 10 to 305 DIM, lnVar was greater and autocorrelation was lower for both cows with early and late mastitis than for cows with no mastitis; and both were predictive of having mastitis in the 305-d lactation. Primiparous cows had lower lnVar than multiparous cows. In cows without mastitis, autocorrelation values were positively correlated with lnVar. Results confirm that increased lnVar is associated with clinical mastitis.  相似文献   

8.
The use of anionic salts to prevent milk fever in dairy cattle has been an effective nutritional strategy; however, the degree of acidification that determines the most acceptable productive responses and well-being of the cow is still a controversial topic. The objective of this study was to assess urine pH in prepartum Holstein cows fed anionic diets and determine its association with plasma total Ca, Mg, P, β-hydroxyl-butyrate (BHB) concentrations at parturition and the occurrence of peripartum disorders. This investigation consisted of 2 studies. Study 1 was conducted on a grazing dairy. Between February and May 2019, 60 prepartum multiparous cows were tested for urine pH and plasma metabolite concentration at parturition. Total Ca, P, Mg and BHB at day 1 in milk (DIM) were assessed and statistically analyzed by ANOVA (models for polynomial regression). Study 2 was conducted on a drylot dairy farm. Between July 2018 and January 2019, 203 cows were evaluated for urine pH and followed-up for 30 DIM to obtain the incidence of dystocia, stillbirths, milk fever, retained fetal membranes, metritis, clinical mastitis and ketosis. Cows were categorized based on their last urine pH as group 1: pH > 7.0 (n = 135); group 2: pH between 6.0 and 7.0 (n = 46) and group 3: pH < 6.0 (n = 22). A logistic regression model for each health event was conducted considering urine pH group as the main effect. Urine sample was collected at 2.71 ± 2.84 days before parturition. In study 1, there was a quadratic effect of urine pH on total Ca. Total Ca concentration was higher between urine pH 6.0 and 7.0, while decreasing below pH 6.0 and above pH 7.0. There was a trend (P = 0.11) for a quadratic effect of urine pH on the concentration of plasma BHB at parturition. β-Hydroxyl-butyrate was lower approximately between urine pH 6.5 and 7.5. In study 2, the odds for a stillborn in cows with urine pH < 6.0 was 2.39 (95% CI = 1.06–5.40) times the odds for a stillborn in cows with urine pH ≥ 7.0. There was no association between urine pH and the other diseases. In conclusion, cows with prepartum urine pH < 6.0 and > 7.0 had lower concentration of plasma total Ca and tended to have a higher concentration of BHB. Cows with urine pH < 6.0 had a higher incidence of stillbirths than cows with urine pH > 7.0.  相似文献   

9.
There is increasing interest in using sainfoin (Onobrychis viciifolia) to feed sheep, but it contains proanthocyanidins (PACs), and the associated effects of PAC on sheep production are not well-known. The aim of the study was to assess the effect of the presence of PAC from sainfoin, through the inclusion of polyethylene glycol (PEG), on the intake and productive parameters of local ewes bearing one male lamb. For the experiment, 20 ewes and their newborn male lambs were placed in individual indoor cages. All ewes were fed ad libitum fresh sainfoin plus 200 g/d barley. Twice daily, half of the ewes were orally dosed with only water (Sainfoin Group; n = 10), and the other half were orally dosed with 100 g/d PEG 4000 per ewe (Sainfoin + PEG Group; n = 10). Sucking lambs were permanently housed with their dams until they reached 10–12 kg BW. The intake of sainfoin was recorded daily, and its chemical composition was analysed. Weekly, the BW, body condition score (BCS), milk yields and individual milk and blood samples were recorded. At the beginning and end of the experiment, faecal samples were collected from ewes and analysed for the anthelmintic role of PAC. The chemical composition, polyphenol content and antioxidant capacity of the diet and milk were analysed. The presence of PAC did not affect the intake, BW, BCS or milk yield of the dams (P > 0.05); however, all parameters were affected by the week of lactation (P < 0.05). Milk components were affected by the week of lactation (P < 0.001), but only the polyphenol and urea contents were reduced in the presence of PAC (P < 0.01). Similarly, the presence of PAC decreased the plasma urea concentration (P < 0.01) without effect on the rest of metabolites, polyphenols and antioxidant activity (P > 0.05). The presence of PAC had no effect on parasitism (P > 0.05). In conclusion, the presence of PAC had no relevant effects on milk production, although it affected protein metabolism, as indicated by the urea contents in milk and plasma.  相似文献   

10.
Gut microbial colonization and immune response may be affected by milk feeding method. The objective of this study was to determine the effects of feeding high or low volumes of milk on fecal bacterial count, inflammatory response, blood metabolites and growth performance of Holstein female calves. Colostrum-fed calves (n = 48) were randomly assigned to either high milk (HM; n = 24) or low milk (LM; n = 24) feeding groups. Low milk-fed calves were fed pasteurized whole milk at 10% of BW until weaning. In HM group, milk was offered to calves at 20% of BW for the first 3 weeks of life. Then, milk allowance was decreased gradually to reach 10% of BW on day 26 and remained constant until weaning on day 51. Calves were allowed free access to water and starter throughout the experiment. Body weight was measured weekly, and blood samples were taken on days 14, 28 and 57. Fecal samples were collected on days 7, 14 and 21 of age for the measurement of selected microbial species. By design, HM calves consumed more nutrients from milk during the first 3 weeks and they were heavier than LM calves on days 21, 56 and 98. High milk-fed calves had greater serum glucose and triglyceride levels on day 14 with no significant difference between groups on days 28 and 57. Blood urea nitrogen was higher in LM calves on day 14, but it was lower in HM calves on day 28. Calves in LM group had significantly greater blood tumor necrosis factor-α (TNF-α) than HM calves throughout the experiment. Serum amyloid A (SAA) concentration was higher in LM calves on day 14. However, HM calves showed higher levels of SAA at the time of weaning. Feeding high volumes of milk resulted in lower serum cortisol levels on days 14 and 28 but not at the time of weaning in HM calves compared to LM counterparts. Lactobacillus count was higher in feces sample of HM calves. Conversely, the numbers of Escherichia coli was greater in the feces of LM calves. Calves in HM group showed fewer days with fever and tended to have fewer days treated compared to LM group. In conclusion, feeding higher amounts of milk during the first 3 weeks of life improved gut microbiota, inflammation and health status and growth performance of Holstein dairy calves.  相似文献   

11.
Plant extracts have been recognized as beneficial to human health and have been evaluated as feed additive for domestic and companion animals. This study evaluated oregano and green tea extracts fed to Jersey cows from approximately 21 d before calving to 21 d after calving on milk production, milk composition, and blood metabolites as well as investigated immunological and antioxidant attributes. Twenty-four Jersey cows with 441 ± 27 kg of BW, 3.5 ± 0.3 of body condition score (BCS), and 2.7 ± 1.8 lactations were selected at approximately 28 d before the expected parturition date and were randomly assigned to three treatments with eight cows each: without plant extracts in diet (control – CON), addition of 10 g per day of oregano extract (OR), and addition of 5 g per day of green tea extract (GT). Feed intake, BW, BCS, blood metabolites, hemogram as well as oxidative stress biomarkers were evaluated from approximately 3 weeks prepartum to 3 weeks postpartum (transition period) while milk production and composition were evaluated during the first 3 weeks of lactation. Plant extracts did not change BW, BCS, and DM intake (DMI) throughout the transition period, but OR increased in approximately 20% total digestive nutrients and metabolizable energy intake on days 15 and 16 postpartum compared with CON. In the prepartum, OR increased in 48% platelets count compared to the CON, while GT augmented in 142% eosinophils compared with CON. Oregano extract reduced the levels of reactive species in the erythrocytes in 40% during prepartum and postpartum compared with CON, while GT reduced its levels in 24 and 29% during prepartum and postpartum, respectively, when compared with CON. In the postpartum period, OR increased in 60% the carbonylated protein content compared with CON, while GT reduced in 45% the levels of reactive species in plasma compared with CON. During the postpartum, both extracts increased in 33% the concentration of reduced glutathione when compared with CON. Moreover, GT tended to decrease feed efficiency in 11% when compared with CON; OE reduced milk pH and somatic cell count when compared with CON. In conclusion, OE and GT did not expressively affect immunological attributes in blood but reduce some oxidative stress biomarkers without compromising productive traits of Jersey cows during the transition period.  相似文献   

12.
During early lactation, most dairy cows experience negative energy balance (NEB). Failure to cope with this NEB, however, can place cows at greater risk of developing metabolic disease. Our objective was to characterise, retrospectively, lying behaviour and activity of grazing dairy cows grouped according to blood non-esterified fatty acids (NEFAs) and β-hydroxybutyrate (BHB) as indicators of postpartum metabolic state. Blood was sampled weekly for up to 4 weeks precalving, on the day of calving (day 0), daily between 1 and 4 days postcalving, and then at least weekly between week 1 and week 5 postcalving for analysis of plasma NEFAs and BHB concentrations. Two hundred and forty-four multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows were classified into one of three metabolic status groups based on maximum blood NEFAs and BHB concentrations during week 1 and 2 postcalving. A cow was classified as having either: (1) low NEFAs and low BHB (Lo–Lo; n = 78), when all blood samples were <1.0 mmol/L for NEFAs and ≤1.0 mmol/L for BHB during the first 2 weeks postcalving; (2) high NEFAs and low BHB (Hi–Lo; n = 134), when blood NEFAs were ≥1.0 mmol/L and blood BHB was ≤1.0 mmol/L at the same sampling time point during the first 2 weeks postcalving; or (3) high NEFAs and high BHB (Hi–Hi; n = 32), when blood NEFAs were ≥1.0 mmol/L and blood BHB was ≥1.2 mmol/L at the same sampling time point during the first 2 weeks postcalving. Accelerometers (IceTag or IceQube devices; IceRobotics Ltd.) were used to monitor lying and activity behaviours peripartum (–21 to +35 days relative to calving). Changes in lying behaviour and activity occurred before the mean day that cows were classified Hi–Hi and Hi–Lo (2.2 and 3.5 d postcalving, respectively). Up to 3 weeks preceding calving, Hi–Hi cows were more active, had fewer daily lying bouts (LBs), and spent less time lying than Lo–Lo cows. In addition, Hi–Hi cows had fewer daily LBs and were less active up to 4 weeks postcalving than Lo–Lo cows, but these differences were biologically small. Groups of grazing cows classified as experiencing a more severe metabolic challenge behave differently up to 3 weeks precalving than their herdmates with lower blood NEFAs and BHB postcalving. These altered behaviours may allow identification of individual cows at risk of a metabolic challenge, but further research is required.  相似文献   

13.
Remarkable increases in the production of dairy animals have negatively impacted their tolerance to heat stress (HS). The evaluation of the effect of HS on milk yield is based on the direct impact of HS on performance. However, in practical terms, HS also exerts its influence during gestation (indirect effect). The main purpose of this study was to identify and characterize the genotype by environment interaction (G × E) due to HS during the last 60 days of gestation (THI_g) and also the HS postpartum (THI_m) over first lactation milk production of Brazilian Holstein cattle. A total of 389 127 test day milk yield (TD) records from 1572 first lactation Holstein cows born in Brazil (daughters of 1248 dams and 70 sires) and the corresponding temperature–humidity index (THI) obtained between December 2007 and January 2013 were analyzed using different random regression models. Cows in the cold environment (THI_g = 64 to 73) during the last 60 days of gestation produced more milk than those cows in a hot environment (THI_g = 74 to 84), particularly during the first 150 days of lactation (DIM). The heritabilities (h2) of TD were similar throughout DIM for cows in THI_g hot (0.11 to 0.20) or (0.10 to 0.22), while the genetic correlations (rg) for TD between these two environments ranged from 0.11 to 0.52 along the first 250 DIM. The h2 estimates for TD across THI_m were similar for cows in THI_g hot (0.07 to 0.25) and THI_g cold (0.08 to 0.19). The rg estimates ranged from 0.17 to 0.42 along THI_m between TD of cows in cold and hot THI_g. The results were consistent in demonstrating the existence of an additional source of G × E for TD due to THI_g and THI_m. The present study is probably the first to provide evidence of this source of G × E; further research is needed because of its importance when the breeding objective is to select animals that are more tolerant to HS.  相似文献   

14.
Hyperketonemia (HYK) is one of the most frequent and costly metabolic disorders in high-producing dairy cows and its diagnosis is based on β-hydroxybutyrate (BHB) concentration in blood. In the last 10 years, the number of papers that have dealt with the impact of elevated BHB levels in dairy cattle has increased. Therefore, this paper reviewed the recent literature on BHB concentration in blood and milk, and its relationships with dairy cow health and performance, and farm profitability. Most studies applied the threshold of 1.2 mmol/l of BHB concentration in blood to indicate HYK; several authors considered BHB concentrations between 1.2 and 2.9 mmol/l as subclinical ketosis, and values ⩾3.0 mmol/l as clinical ketosis. Results on HYK frequency (prevalence and incidence) and cow performance varied according to parity and days in milk, being greater in multiparous than in primiparous cows, and in the first 2 weeks of lactation than in later stages. Hyperketonemia has been associated with greater milk fat content, fat-to-protein ratio and energy-corrected milk, and lower protein and urea nitrogen in milk. The relationships with milk yield and somatic cell count are still controversial. In general, HYK impairs health of dairy cows by increasing the risk of the onset of other early lactation diseases, and it negatively affects reproductive performance. The economic cost of HYK is mainly due to impaired reproductive performance and milk loss. From a genetic point of view, results from the literature suggested the feasibility of selecting cows with low susceptibility to HYK. The present review highlights that milk is the most promising matrix to identify HYK, because it is easy to sample and allows a complete screening of the herd through BHB concentration predicted using mid-IR spectroscopy during routine milk recording. Further research is needed to validate accurate and convenient methods to discriminate between cows in risk of HYK and healthy animals in field conditions and to support farmers to achieve an early detection and minimise the economic losses.  相似文献   

15.
Estimates of milk constituents by Fourier-transform mid-infrared (FTIR) analysis have been shown to be a useful tool in monitoring energy deficit in early-lactation dairy cows. Our objectives were to describe the diurnal variation in milk fatty acids (FAs) and estimate the association of hyperketonemia with concentrations and diurnal patterns of FTIR estimates of milk FA. Blood samples were collected via jugular catheters bihourly for 5 d from multiparous Holstein cows (n = 28) enrolled between 3 and 9 days in milk. Milk samples were collected thrice daily at 0600, 1400, and 2200 h for d 2, 3, and 4 of the study period. Cows were retrospectively classified as hyperketonemic (HYK; n = 13) or non-HYK (n = 15) based on blood beta-hydroxybutyrate (bBHB) concentrations analyzed during the study period. Cows were classified as HYK if bBHB was ≥ 1.2 mmol/l for ≥ 50% (22/44) of bihourly timepoints; cows were classified as non-HYK if bBHB was ≥ 1.2 mmol/l for < 50% of bihourly timepoints. The HYK cows had bBHB ≥ 1.2 mmol/l for 31.4 ± 6.8 timepoints while the non-HYK cows had bBHB ≥ 1.2 mmol/l for 8.0 ± 3.9 timepoints. We used generalized linear mixed models to analyze concentrations of milk FA over time and differences between HYK groups. The relative percentage of de novo, mixed, and preformed FAs all followed diurnal patterns, however only the yield of preformed FA diurnally cycled, reaching a nadir at 0600 h and peaking at 1400 h. The yield per milking of preformed FA was also greater in the HYK cows than in the non-HYK cows. Oleic acid in milk followed a similar diurnal pattern to the yield of preformed FA, likely driving the cyclical nature of preformed FA. Finally, stearic acid was greater in HYK cows. Our results suggest that FTIR estimates of milk FA offer the potential to provide insight on the energy status of early-lactation cows, and when interested in understanding the absolute concentrations and yields of milk FA, diurnal variation should be considered.  相似文献   

16.
The automated milking system provides breeders with a large amount of automatically collected information about each cow in herd that cannot be easily obtained in non-robotised systems. This knowledge can be used in breeding programs improving somatic cell count (SCC) level. The objective of this study was to estimate heritabilities and genetic correlations among test-day (TD) somatic cell score (SCS) and selected milking traits, such as daily milk yield (MY), milking frequency (MF), milking time (MT) and milking speed (MS), attachment time (AT) to single teat cups, electrical conductivity (EC) and milk temperature (MTEMP). Data were collected for 1 899 Polish Holstein-Friesian primiparous cows milked in an automatic milking system. Genetic parameters of the studied traits were estimated using Bayesian method via Gibbs sampling and two-trait random regression animal model with fixed effect of herd x TD, fixed regressions on days in milk (DIM) nested within age at calving by season of calving and RR for additive genetic and permanent environmental effects. Both fixed and RR were fitted with fourth-order Legendre polynomials on DIM. The estimated daily heritabilities were in the following ranges: MY – 0.162–0.338, MF – 0.156–0.444, MT – 0.090–0.320, MS – 0.252–0.665, AT – 0.105–0.394, EC – 0.269–0.466, MTEMP – 0.135–0.304 and SCS – 0.155–0.321. The heritabilities for traits expressed on a 305-d basis were moderate to high: 0.460 for MY, 0.514 for MF, 0.315 for MT, 0.431 for MS, 0.256 for AT, 0.386 for EC, 0.407 for MTEMP and 0.359 for SCS. Genetic correlations between traits on a 305-d basis showed that SCS was most strongly genetically correlated with MTEMP (0.572) and MS (0.480), whereas genetic relationships of SCS with MT (0.221) and EC (− 0.216) were moderate. Phenotypic correlations between traits on a 305-d basis were moderate or low. Somatic cell score was negatively phenotypically correlated with MY, MF and MT, with the highest relationship with MT (− 0.302). The largest positive phenotypic correlations were observed between SCS and MS (0.311) and with MTEMP (0.286). In summary, it is concluded that there is a chance to carry out effective selection for lower SCS and for some other traits, in particular MS and MTEMP. The obtained results are promising enough to conduct further research to evaluate how these traits can be used both to increase the accuracy of genetic evaluations of SCC and to improve udder health.  相似文献   

17.
Between November 2002 and April 2003, 244 bottles and cartons of commercially pasteurized cow's milk were obtained at random from retail outlets throughout the Czech Republic. During the same period, samples of raw milk and of milk that was subsequently subjected to a minimum of 71.7°C for 15 s in a local pasteurization unit were also obtained from two dairy herds, designated herds A and B, with low and high levels, respectively, of subclinical Mycobacterium avium subsp. paratuberculosis infection, and from one herd, herd C, without infection. Infection in individual cows in each herd was tested by fecal culturing. Milk samples were brought to the Veterinary Research Institute in Brno, Czech Republic, processed, inoculated onto Herrold's egg yolk slants, and incubated for 32 weeks. Colonies were characterized by morphology, Ziehl-Neelsen staining, mycobactin J dependency, and IS900 PCR results. M. avium subsp. paratuberculosis was cultured from 4 of 244 units (1.6%) of commercially pasteurized retail milk. M. avium subsp. paratuberculosis was also cultured from 2 of 100 (2%) cartons of locally pasteurized milk derived from infected herds A and B and from 0 of 100 cartons of milk from uninfected herd C. Raw milk from 1 of 10 (10%) fecal culture-positive cows in herd A and from 13 of 66 (19.7%) fecal culture-positive cows in herd B was culture positive for M. avium subsp. paratuberculosis. These findings confirm that M. avium subsp. paratuberculosis is present in raw milk from subclinically infected dairy cows. The culture of M. avium subsp. paratuberculosis in the Czech Republic from retail milk that had been pasteurized locally or commercially to the required national and European Union standards is in agreement with similar research on milk destined for consumers in the United Kingdom and the United States and shows that humans are being exposed to this chronic enteric pathogen by this route.  相似文献   

18.
The Kempen system is a dairy feeding system in which diet is provided in the form of a compound feed (CF) and hay offered ad libitum. Ad libitum access to CF and hay allows cows in this system to achieve a high DM intake (DMI). Out of physiological concerns, the voluntary hay intake could be increased and the consumption pattern of CF could be manipulated to maintain proper rumen functioning and health. This study investigated the effects of an artificial hay aroma and CF formulation on feed intake pattern, rumen function and milk production in mid- to late-lactating dairy cows. Twenty Holstein–Friesian cows were assigned to four treatments in a 4 × 4 Latin square design. Diet consisted of CF and grass hay (GH), fed separately, and both offered ad libitum, although CF supply was restricted in maximum meal size and speed of supply by an electronic system. Treatments were the combination of two CF formulations – high in starch (CHS) and fibre (CHF); and two GH – untreated (UGH) and the same hay treated with an artificial aroma (TGH). Meal criteria were determined using three-population Gaussian–Gaussian–Weibull density functions. No GH × CF interaction effects on feed intake pattern characteristics were found. Total DMI and CF intake, but not GH intake, were greater (P < 0.01) in TGH treatment, and feed intake was not affected by type of CF. Total visits to feeders per day, visits to the GH feeder, visits to the CF feeder and CF eating time (all P < 0.01) were significantly greater in cows fed with TGH. Meal frequency, meal size and meal duration were unaffected by treatments. Cows fed CHF had a greater milk fat (P = 0.02), milk urea content (P < 0.01) and a greater milk fat yield (P < 0.01). Cows fed TGH had a greater milk lactose content and lactose yield (P < 0.05), and milk urea content (P < 0.01). Cows fed TGH had smaller molar proportions of acetic acid and greater molar proportions of propionic acid compared with UGH. In conclusion, treatment of GH with an artificial aroma increased CF intake and total DMI, but did not affect hay intake. Additionally, GH treatment increased the frequency of visits to both feeders, and affected rumen volatile fatty acid profile. Type of CF did not affect meal patterns, ruminal pH, nor fermentation profiles.  相似文献   

19.
This study was designed to monitor the presence of Mycoplasma agalactiae and Mycoplasma mycoides subsp. capri (Mmc) in 66 dairy goat herds of a genetic improvement programme in a region of Spain where contagious agalactia is endemic. Over a whole lactation period, 300 bulk tank milk and 381 milk samples from goats with clinical mastitis were subjected to polymerase chain reaction (PCR) to detect the two mycoplasma species. The presence of mycoplasmas (either species or both) was detected in 66.7% of the herds and M. agalactiae was identified in 95.45% of these positives herds. In a given infected herd, mycoplasmas were not continuously detected over the whole study period. Our findings indicate that in an endemic area, M. agalactiae and Mmc can be monitored through PCR analysis of mastitic milk and bulk tank milk (BTM) samples. Over a lactation period we recommend testing multiple BTM samples on a herd. No relationship was observed between the use of inactivated mycoplasma vaccines and the PCR detection of both mycoplasmas.  相似文献   

20.
The rising global demand for animal products and the growing public concerns about the environment and animal welfare require dairy farms to improve their efficiency and apply more sustainable farming systems. Precision Livestock Farming (PLF) could represent a valuable support in addressing these challenges. In recent years, dairy farms have been modernising and introducing new sensors and automatic systems for managing the herd. However, the diffusion of new technologies in Italian dairy farms is still limited and farmers are reluctant to invest in precision systems. The aim of the study was to investigate the presence of PLF tools in Italian dairy farms, the motivations, benefits and limits of technological investments from the farmers’ point of view and the factors affecting the diffusion of technology. From November 2020 to June 2021, an online questionnaire was distributed and 52 responses were obtained. About 79% of the farms were located in Lombardy. The more represented milking system was the conventional milking parlour (73%), followed by automatic milking (19%). The average age of respondents was quite low: 35% of them was less than 40 years old and more than 50% was between 40 and 60. Statistical analyses were performed to evaluate the effects of different factors on the presence of technology at farm. The age of the farmer, the milk production level and the presence of an automatic milking system influenced the technological level of the farm. Precision systems that provide information on animal activity for the management of reproduction and on milk yield and flow are the most popular and are considered among the most useful. Management of reproduction and milk production are the areas where farmers appear to show interest for future investments as well. Younger farmers appear to have implemented more PLF systems than older ones, and they show a propensity to invest in latest generation precision tools. Farmers seem to have a growing interest in PLF, but some limits have been identified: the investment costs, followed by the lack of time to check information from sensor systems and the difficulty in data interpretation. As PLF technologies can play an important role in the development of sustainable, animal-friendly and efficient livestock production, further improvements and efforts are necessary to increase the propensity to PLF of dairy farmers. Results can be useful in the Italian context but also in other countries where dairy farming is rapidly intensifying but PLF is encountering resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号