首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin is a polyphenolic molecule with antibacterial, antioxidant, anti‐inflammatory, and antimicrobial properties. This study aimed to prepare nanocurcumin by encapsulating in biopolymers to improve its stability, bioavailability, water‐solubility, antibacterial efficiency against methicillin‐resistant Staphylococcus aureus. Three effective variables of curcumin concentration, polymer concentration, and water volume on curcumin‐loaded polymer nanoparticles, were optimized. The average size of polyacrylic acid (PAA), polyvinyl alcohol (PVA), and polyethyleneimine (PEI) nanoparticles were obtained 75.2, 77.1, 86.4 nm, respectively. The nanoparticles had a spherical shape, a smooth and uniform surface morphology. The MIC of PAA, PVA, and PEI nanoparticles was 0.480, 0.390, and 0.340 mg/mL, respectively and the MIC of PAA, PVA, and PEI combined with methicillin was 0.330, 0.260, and 0.200 mg/mL, respectively. According to the results, curcumin‐loaded PEI nanoparticles had the highest inhibitory effect against methicillin‐resistant S. aureus among the synthesized nanoparticles. The results showed that solvent volume, polymer concentration and curcumin concentration had a significant effect on particle size. The inhibitory properties of curcumin nanoparticles significantly increased due to the smaller particle size and increased penetration into the bacterium. Curcumin‐loaded nanoparticles can be promising drug carriers for the treatment of infections, cancer, and other diseases.  相似文献   

2.
The influence of formulation variables, i.e., a hydrophilic polymer (Methocel® E15) and a film-forming polymer (Eudragit® RL 100 and Eudragit® RS 100), on the physicochemical and functional properties of a transdermal film formulation was assessed. Several terpenes were initially evaluated for their drug permeation enhancement effects on the transdermal film formulations. d-Limonene was found to be the most efficient permeation enhancer among the tested terpenes. Transdermal film formulations containing granisetron (GRN) as a model drug, d-limonene as a permeation enhancer, and different ratios of a hydrophilic polymer (Methocel® E15) and a film-forming polymer (Eudragit® RL 100 or Eudragit® RS 100) were prepared. The prepared films were evaluated for their physicochemical properties such as weight variation, thickness, tensile strength, folding endurance, elongation (%), flatness, moisture content, moisture uptake, and the drug content uniformity. The films were also evaluated for the in vitro drug release and ex vivo drug permeation. The increasing ratios of Methocel®:Eudragit® polymers in the formulation linearly and significantly increased the moisture content, moisture uptake, water vapor transmission rate (WVTR), and the transdermal flux of GRN from the film formulations. Increasing levels of Methocel® in the formulations also increased the rate and extent of the GRN release and the GRN permeation from the prepared films.KEY WORDS: film-forming polymers, hydrophilic polymers, permeation enhancers, transdermal films  相似文献   

3.
The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability. Nateglinide-loaded poly Ɛ-caprolactone nanoparticles were prepared by emulsion solvent evaporation with ultrasonication technique and subjected to various studies for characterization including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, photon correlation spectroscopy and evaluated for in vitro drug release and pharmacodynamic studies. The influence of increase in polymer concentration, ultrasonication time, and solvent evaporation rate on nanoparticle properties was investigated. The formulations were optimized based on the above characterization, and the formulation using 5% polymer, 3-min sonication time, and rota-evaporated was found to have the best drug entrapment efficiency of 64.09 ± 4.27% and size of 310.40 ± 11.42 nm. Based on SEM, nanoparticles were found to be spherical with a smooth surface. In vitro drug release data showed that nanoparticles sustained the nateglinide release for over 12 h compared to conventional tablets (Glinate 60 mg), and drug release was found to follow Fickian mechanism. In vivo studies showed that nanoparticles prolonged the antidiabetic activity of nateglinide in rats significantly (p ≤ 0.05) compared to the conventional tablets (Glinate 60 mg) over a period of 12 h. Accelerated stability data indicated that there was minimal to no change in drug entrapment efficiency.KEY WORDS: drug encapsulation efficiency, nanoparticles, poly Ɛ-caprolactone (PCL), probe sonication  相似文献   

4.
The purpose of this work was to investigate the influence of Eudragit®E100 polymer in modifying the release rates and compaction properties of water soluble model drug paracetamol from Carbopol®971P NF polymer matrix tablets prepared by direct compression. The effects of the ratio of the two polymers, the total polymeric content, and the tablets mechanical strength on paracetamol release rates were investigated. Dissolution studies were conducted using USP XX Π rotating paddle apparatus at 50 rpm and 37°C at three different stages (pH 1.2, 4.8, and 6.8). Results showed that the polymers combination improved significantly the compaction properties of paracetamol tablets as evident by the higher crushing strengths (8.3 ± 0.4 Kp) compared to polymer-free tablets (3.4 ± 0.2 Kp) at intermediate compression pressure of 490 MPa. When combined with Carbopol®971P NF, Eudragit®E100 was found to be capable of extending paracetamol release for more than 12 h compared to 1 h for polymers-free tablets. The combined polymers were able to control paracetamol release in a pH independent pattern. The f2 (similarity factor) analysis showed that the ratio between the polymers and the total polymer concentration exhibited significant impact on drug release rates. In conclusion, Eudragit®E100 when combined with Carbopol®971P NF was capable of improving the compaction and sustained release properties of paracetamol. Korsmeyer–Peppas model was found to be the most suitable for fitting drug release data. The polymer combinations can potentially be used to control the release rates of highly water soluble drugs.KEY WORDS: Carbopol®971P NF, Eudragit®E100, matrix tablet, pH-independent release, sustained  相似文献   

5.
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds.  相似文献   

6.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

7.
Tackiness caused by the gas-entrapped membrane (Eudragit®RL 30D) was usually observed during storage of the effervescent floating tablets, leading to failure in floatation and sustained release. In this work, common anti-tacking agents (glyceryl monostearate (GMS) and talc) were used to solve this tackiness problem. The impact of anti-tacking agent on the properties of free films and corresponding floating tablets was investigated. GMS was more effective than talc in reducing tackiness of the film. Addition and increasing amount of anti-tacking agents lowered the film mechanical strength, but the coating films were still strong and flexible enough to resist the generated gas pressure inside the floating tablet. Wettability and water vapor permeability of the film decreased with increasing level of anti-tacking agents as a result of their hydrophobicity. No interaction between anti-tacking agents and polymer was observed as confirmed by Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry studies. Increasing amount of anti-tacking agents decreased time to float and tended to retard drug release of the floating tablets. Floating properties and drug release were also influenced by type of anti-tacking agents. The obtained floating tablets still possessed good floating properties and controlled drug release even though anti-tacking agent had some effects. The results demonstrated that the tackiness problem of the floating tablets could be solved by incorporating anti-tacking agent into the gas-entrapped membrane.KEY WORDS: anti-tacking agent, coating film, controlled release, effervescent floating tablets, Eudragit®RL 30D  相似文献   

8.
Curcumin has diverse biological activities including antioxidant and anti-inflammatory activity. However, its clinical use for topical application is limited due to its poor aqueous solubility and thus, minimal cutaneous bioavailability. Elastic vesicles (EVs) of curcumin were prepared to improve its cutaneous bioavailability and to use it for topical anti-inflammatory effect. Ex vivo skin permeation and retention studies were performed to check if incorporation of curcumin into EVs could improve its permeation into and retention in the skin. Evaluation of acute and chronic anti-inflammatory effect was done using xylene-induced acute ear edema in mice and cotton pellet-induced chronic inflammation in rats, respectively. A significant improvement in flux (nine times) across murine skin was observed when aqueous dispersion of curcumin (flux − 0.46 ± 0.02 μg/h/cm2) was compared with curcumin-loaded EVs (flux − 4.14 ± 0.04 μg/h/cm2 ). Incorporation of these curcumin-loaded EVs into a hydrophilic ointment base resulted in higher skin retention (51.66%) in contrast to free curcumin ointment (1.64%) and a marketed formulation (VICCO® turmeric skin cream). The developed ointment showed an effect similar (p < 0.05) to the marketed diclofenac sodium ointment (Omni-gel®) in suppression of acute inflammation in mouse; a significant inhibition (28.8% versus 3.91% for free curcumin) of cotton pellet-induced chronic inflammation was also observed. Thus, curcumin-loaded EVs incorporated in hydrophilic ointment is a promising topical anti-inflammatory formulation.KEY WORDS: anti-inflammatory, curcumin, elastic vesicles, topical formulation  相似文献   

9.
We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. Saffman-Delbrück type models relate the single-particle diffusivity to parameters of the film (such as thickness h) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the crossover at h/d = 5.2 ± 0.9 using the tracer particle diameter d. This indicates a crossover from purely 2D diffusion to diffusion that is more three-dimensional. We demonstrate that measuring the correlations of particle pairs as a function of their separation overcomes the limitations of the Saffman-Delbrück model and allows one to measure the viscosity of a soap film for any thickness.  相似文献   

10.
The objective of this study was to study the effect of formulation compositions on physicochemical properties and anti-Propionibacterium acnes activity of film-forming solutions containing alpha-mangostin-rich extract (AM). Film-forming solution bases and film-forming solutions containing AM were prepared by using Eudragit RL PO or Klucel LF or combinations of them as film-forming polymers. Rheological properties, pH values of the solutions, and mechanical properties of the dry films were investigated. An optimized formulation was selected and evaluated for the film surface, in vitro AM release, an anti-P. acnes activity, and potential for being a skin irritant. It was found that mechanical properties of the dry films were affected by total polymer contents, ratios of Klucel LF/Eudragit RL PO, AM, and contents of triethyl citrate. The film-forming solutions containing AM had pH values around 7.0. Their flow curves exhibited Newtonian flow behaviors. The optimized formulation provided films possessing smooth and nonporous surfaces. These films showed greater anti-P. acnes activity than their base films without toxicity to skin fibroblasts. Furthermore, AM released from the film matrix obeyed Higuchi's equation. In conclusion, the film-forming solutions containing AM had potential for treatment of acne vulgaris caused by P. acnes. However, further in vivo study is necessary to determine their efficacy and safety for using in patients suffering from acne vulgaris.  相似文献   

11.

Objective

Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells.

Methods

Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins.

Results

The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation.

Conclusions

Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.  相似文献   

12.
This study is an extrapolation of our previous one (part I) concerned with the formulation and physicochemical evaluation of a novel, simple, monolayer, easy-to-use, cost-effective, and aesthetically acceptable bioadhesive transdermal patch for tramadol hydrochloride. The current work is focused on bioadhesion, skin tolerability, and pharmacodynamic evaluation. Using naked rat skin, chitosan–Eudragit® NE30D (1:1) film attained best bioadhesive properties. During in vivo studies, it also showed a significantly extended analgesic effect compared to both oral formula and chitosan single polymeric film using the hot plate test method. All the polymeric films were skin tolerable for the intended period of application according to the Draize test. The success of our approach can proudly, positively contribute into the world of pain management and arguably push transdermal delivery to realize its great promise.  相似文献   

13.
The current study involved the development of a novel sustained release crosslinked semi-IPN xerogel matrix tablet prepared by chemical crosslinking of poly(ethylene) oxide (PEO) and gellan gum (GG) employing epichlorohydrin (EPI) as crosslinker. A Box–Behnken design was employed for the statistical optimization of the matrix system to ascertain the ideal combination of native polymeric and crosslinking agents. Characterization studies were performed by employing standard polymer characterization techniques such as Fourier transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy. Formulated matrix tablets displayed zero-order release kinetics, extending over 24 h. The mechanism of drug release was primarily by swelling and surface erosion. Crosslinked semi-IPN xerogel matrix tablets were compared to non-crosslinked polymer blends; results from the study conducted showed that the physiochemical properties of the PEO and GG were sufficiently modified to allow for sustained release of sulpiride with a 100% drug release at 24 h in a controlled manner as compared to non-crosslinked formulations which displayed further release beyond the test period. Crosslinked formulations displayed water uptake between 450 and 500% indicating a controlled rate of swelling and erosion allowing for sustained release. Surface morphology of the crosslinked system depicted a porous structure formed by interpenetrating networks of polymers, allowing for a greater degree of controlled penetration into the system affording it the ability to sustain drug release. Therefore, conclusively, based on the study performed, crosslinked PEO-GG allows for the sustained release of sulpiride from a hydrophilic semi-IPN xerogel matrix system.KEY WORDS: epichlorohydrin, matrix tablet, semi-interpenetrating polymer network, sustained release, sulpiride  相似文献   

14.
Environmentally friendly films exhibiting both antibacterial and antioxidative properties were elaborated from chitosan and tetrahydrocurcuminoids (THCs). Two tetrahydrocurcuminoids, THC1 (5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one) and THC2 (5-hydroxy-1,7-bis(4-hydroxy-3,5-dimethoxyphenyl)hept-4-en-3-one), were incorporated into a chitosan film. THC1 could be prepared from natural curcumin extracted from turmeric roots (Curcuma longa L.). The resulting tetrahydrocurcuminoid–chitosan films exhibited a high free-radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) in methanol, which was due to a progressive release of the THCs into the solvent. The release kinetics was governed both by molecular interactions between chitosan and THCs and probably by electrostatic forces between the ammonium units in chitosan and the aromatic rings in THCs. These interactions were clearly evidenced by the presence of new absorption bands in the visible regions of the electronic absorption spectra of the THCs. The molecular nature of these interactions was shown using glucosamine, the main monomer of chitosan. When associated with THCs, chitosan retained its bioactivity against Listeria innocua; THCs alone were not bioactive enough against listerial strains.  相似文献   

15.
This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.  相似文献   

16.
The purpose of this study was to investigate the physical stability of a coating system consisting of a blend of two sustained release acrylic polymers and its influence on the drug release rate of theophylline from coated pellets. The properties of both free films and theophylline pellets coated with the polymer blend were investigated, and the miscibility was determined via differential scanning calorimetry. Eudragit® RS 30 D was plasticized by the addition of Eudragit® NE 30 D, and the predicted glass transition temperature (T g) of the blend was similar to the experimental values. Sprayed films composed of a blend of Eudragit® NE 30 D/Eudragit® RS 30 D (1:1) showed a water vapor permeability six times greater than films containing only Eudragit® NE 30 D. The presence of quaternary ammonium functional groups from the RS 30 D polymer increased the swellability of the films. The films prepared from the blend exhibited stable permeability values when stored for 1 month at both 25°C and 40°C, while the films which were composed of only Eudragit® NE 30 D showed a statistically significant decrease in this parameter when stored under the same conditions. Eudragit® NE 30 D/Eudragit® RS 30 D (1:1)-sprayed films decreased in elongation from 180% to 40% after storage at 40°C for 1 month, while those stored at 25°C showed no change in elongation. In coated pellets, the addition of Eudragit® RS 30 D to the Eudragit® NE 30 D increased the theophylline release rate, and the pellets were stable when stored at 25°C for a period of up to 3 months due to maintenance of the physico-mechanical properties of the film. Pellets stored at 40°C exhibited a decrease in drug release rate over time as a result of changes in film physico-mechanical properties which were attributed to further coalescence and densification of the polymer. When the storage temperature was above the T g of the composite, instabilities in both drug release rate and physical properties were evident. Stabilization in drug release rate from coated pellets could be correlated with the physico-mechanical stability of the film formulation when stored at temperatures below the T g of the polymer.  相似文献   

17.
Cold atmospheric plasma (CAP) has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time) in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.  相似文献   

18.
Curcumin is the main bioactive component of Curcuma longa L. and has recently aroused growing interest from the scientific community. Unfortunately, the medicinal properties attributed to curcuminoids are impaired by their low oral bioavailability or low solubility in aqueous solutions. Many strategies have been studied to improve curcumin solubility; however, the preparation of granules using hydrophilic materials has never been attempted. The aim of this work was to develop curcumin granules by fluidized bed hot-melt granulation using the hydrophilic carrier Gelucire® 50:13. A two-level factorial design was used to verify the influence of Gelucire® 50:13 and lactose contents found in the granules on their size, morphology, bulk and tapped densities, flow, moisture content, and water activity. The granules obtained were also evaluated by differential scanning calorimetry, thermogravimetric analysis, X-ray powder diffraction, and infrared spectrometry. The curcumin solubility and dissolution rates in water were determined by liquid chromatography. The best formulation provides an increase of curcumin solubility of 4642-fold and 3.8-fold compared to the physical mixture. The dissolution tests showed a maximum drug release from granules after 45 min of 70% at pH 1.2 and 80% at pH 5.8 and 7.4, while for non-granulated curcumin, the release was below 20% in all pH. The solid-state characterization and solubility measurement showed good stability of granules over 9 months. The results attest that the fluidized bed hot-melt granulation with hydrophilic binders is an attractive and promising alternative to obtain solid forms of curcumin with enhanced bioavailability.  相似文献   

19.
pH-sensitive N-naphthyl-N,O-succinyl chitosan (NSCS) and N-octyl-N,O-succinyl chitosan (OSCS) polymeric micelles carriers have been developed to incorporate curcumin (CUR) for colon-targeted drug delivery. The physical entrapment methods (dialysis, co­solvent evaporation, dropping, and O/W emulsion) were applied. The CUR-loaded micelles prepared by the dialysis method presented the highest loading capacity. Increasing initial amount of CUR from 5 to 40 wt% to polymer resulted in the increase in loading capacity of the polymeric micelles. Among the hydrophobic cores, there were no significant differences in the loading capacity of CUR-loaded micelles. The particle sizes of all CUR-loaded micelles were in the range of 120–338 nm. The morphology of the micelles changed after being contacted with medium with different pH values, confirming the pH-responsive properties of the micelles. The release characteristics of curcumin from all CUR-loaded micelles were pH-dependent. The percent cumulative release of curcumin from all CUR-loaded micelles in simulated gastric fluid (SGF) was limited to about 20%. However, the release amount was significantly increased after contacted with simulated intestinal fluid (SIF) (50–55%) and simulated colonic fluid (SCF) (60–70%). The released amount in SIF and SCF was significantly greater than the release of CUR from CUR powder. CUR-loaded NSCS exhibited the highest anti-cancer activity against HT-29 colorectal cancer cells. The stability studies indicated that all CUR-loaded micelles were stable for at least 90 days. Therefore, the colon targeted, pH-sensitive NSCS micelles may have potential to be a prospective candidate for curcumin delivery to the colon.  相似文献   

20.
The objective of this study was to compare a novel controlled release tablet formulation based on interpolyelectrolyte complex (PEC). Interpolymer interactions between the countercharged polymers like Eudragit® EPO (polycation) and hypromellose acetate succinate (polyanion) and Eudragit® EPO and hypromellose phthalate (polyanion) were investigated with a view to their use in per oral controlled release drug delivery systems. The formation of inter-macromolecular ionic bonds between cationic polymer and anionic polymer was investigated using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry. The FT-IR spectra of the tested polymeric matrices are characterized by visible changes in the observed IR region indicating the interaction between chains of two oppositely charged copolymers. The performance of the in situ formed PEC as a matrix for controlled release of drugs was evaluated, using acetaminophen as a model drug. The dissolution data of these matrices were fitted to different dissolution models. It was found that drug release followed zero-order kinetics and was controlled by the superposition of the diffusion and erosion. These profiles could be controlled by conveniently modifying the proportion of the polymer ratio, polymer type, and polymer concentration the in the tablets.KEY WORDS: Eudragit E, hypromellose acetate succinate, hypromellose phthalate polyelectrolyte complexation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号