首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Animal microRNA (miRNA) target prediction is still a challenge, although many prediction programs have been exploited. MiRNAs exert their function through partially binding the messenger RNAs (mRNAs; likely at 3′ untranslated regions [3′UTRs]), which makes it possible to detect the miRNA-mRNA interactions in vitro by co-transfection of miRNA and a luciferase reporter gene containing the target mRNA fragment into mammalian cells under a dual-luciferase assay system. Here, we constructed a human miRNA expression library and used a dual-luciferase assay system to perform large-scale screens of interactions between miRNAs and the 3′UTRs of seven genes, which included more than 3,000 interactions with triplicate experiments for each interaction. The screening results showed that the 3′UTR of one gene can be targeted by multiple miRNAs. Among the prediction algorithms, a Bayesian phylogenetic miRNA target identification algorithm and a support vector machine (SVM) presented a relatively better performance (27% for EIMMo and 24.7% for miRDB) against the average precision (17.3%) of the nine prediction programs used here. Additionally, we noticed that a relatively high conservation level was shown at the miRNA 3′ end targeted regions, as well as the 5′ end (seed region) binding sites.  相似文献   

4.
5.
Variants in regulatory regions are predicted to play an important role in disease susceptibility of common diseases. Polymorphisms mapping to microRNA (miRNA) binding sites have been shown to disrupt the ability of miRNAs to target genes resulting in differential mRNA and protein expression. Skin tumor susceptibility 5 (Skts5) was identified as a locus conferring susceptibility to chemically-induced skin cancer in NIH/Ola by SPRET/Outbred F1 backcrosses. To determine if polymorphisms between the strains which mapped to putative miRNA binding sites in the 3′ untranslated region (3′UTR) of genes at Skts5 influenced expression, we conducted a systematic evaluation of 3′UTRs of candidate genes across this locus. Nine genes had polymorphisms in their 3′UTRs which fit the linkage data and eight of these contained polymorphisms suspected to interfere with or introduce miRNA binding. 3′UTRs of six genes, Bcap29, Dgkb, Hbp1, Pik3cg, Twistnb, and Tspan13 differentially affected luciferase expression, but did not appear to be differentially regulated by the evaluated miRNAs predicted to bind to only one of the two isoforms. 3′UTRs from four additional genes chosen from the locus that fit less stringent criteria were evaluated. Ifrd1 and Etv1 showed differences and contained polymorphisms predicted to disrupt or create miRNA binding sites but showed no difference in regulation by the miRNAs tested. In summary, multiple 3′UTRs with putative functional variants between susceptible and resistant strains of mice influenced differential expression independent of predicted miRNA binding.  相似文献   

6.
7.
Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3′ untranslated region (UTR). Using RNA induced silencing complex immunoprecipitation (RISC-IP) techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV) miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5′UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5′UTRs.  相似文献   

8.
9.
10.
11.
12.

Background

MicroRNAs (miRNAs) are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5′ seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis.

Methodology/Principal Findings

Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6.

Conclusions/Significance

We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term ‘cell cycle’. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.  相似文献   

13.
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.  相似文献   

14.
15.
XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3′ untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes.  相似文献   

16.
MicroRNA (miRNA) 5′-isoforms, or 5′-isomiRs, are small-RNA species that originate from the same genomic loci as the major miRNAs with their 5′ ends shifted from the 5′ ends of the miRNAs by a few nucleotides. Although 5′-isomiRs have been reported, their origins, properties and potential functions remain to be examined. We systematically studied 5′-isomiRs in human, mouse, fruitfly and worm by analysing a large collection of small non-coding RNA and mRNA profiling data. The results revealed a broad existence of 5′-isomiRs in the four species, many of which were conserved and could arise from genomic loci of canonical and non-canonical miRNAs. The well-conserved 5′-isomiRs have several features, including a preference of the 3p over the 5p arms of hairpins of conserved mammalian miRNAs, altered 5′-isomiRs across species and across tissues, and association with structural variations of miRNA hairpins. Importantly, 5′-isomiRs and their major miRNAs may have different mRNA targets and thus potentially play distinct roles of gene regulation, as shown by an integrative analysis combining miRNA and mRNA profiling data from psoriatic and normal human skin and from murine miRNA knockout assays. Indeed, 18 5′-isomiRs had aberrant expression in psoriatic human skin, suggesting their potential function in psoriasis pathogenesis. The results of the current study deepened our understanding of the diversity and conservation of miRNAs, their plasticity in gene regulation and potential broad function in complex diseases.  相似文献   

17.
18.
19.
20.
The number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in synapses determines synaptic strength. AMPAR expression can be regulated locally in dendrites by synaptic activity. The mechanisms of activity-dependent local regulation of AMPAR expression, however, remain unclear. Here, we tested whether microRNAs (miRNAs) are involved in N-methyl-d-aspartate (NMDA) receptor (NMDAR)–dependent AMPAR expression. We used the 3′ untranslated region of Gria1, which encodes the AMPA receptor subunit GluA1, to pull down miRNAs binding to it and analyzed these miRNAs using next-generation deep sequencing. Among the identified miRNAs, miR-501-3p is also a computationally predicted Gria1-targeting miRNA. We confirmed that miR-501-3p targets Gria1 and regulates its expression under physiological conditions. The expression of miR-501-3p and GluA1, moreover, is inversely correlated during postnatal brain development. miR-501-3p expression is up-regulated locally in dendrites through the NMDAR subunit GluN2A, and this regulation is required for NMDA-induced suppression of GluA1 expression and long-lasting remodeling of dendritic spines. These findings elucidate a miRNA-mediated mechanism for activity-dependent, local regulation of AMPAR expression in dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号