首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The critical electrolyte concentration principle was applied to the Alcian Blue staining of rat epiphyseal cartilage proteoglycans for electron microscopy. The distribution and structure of material in glutaraldehyde-fixed cartilage stained at pH 5.8 without MgCl2 and in the presence of 0.05, 0.4, 0.5, 0.9 and 1.0 M MgCl2 was compared with that produced by simultaneous staining and fixation at neutral pH. Both methods resulted in staining of intracellular material within vacuoles as well as staining of non-collagenous matrix material. The structure and distribution of Alcian Blue-positive matrix material consisted of rounded or polygonal granules which accumulated around cells in the proliferative and hypertrophied zones. A similar pattern of distribution was observed in samples stained in the presence of 0.4 or 0.5 M MgCl2. In these cases, however, the stained material exhibited a ribbon-like configuration and granules were few in number. Increasing the MgCl2 concentration to 1.0 M resulted in a marked reduction of Alcian Blue stained material. No ribbon-like structures were observed, and matrix granules were reduced in both number and size. The decreased staining associated with increased electrolyte concentration lends support to the concept that epiphyseal cartilage matrix granules are composed primarily of chondroitin sulphate, and suggest that this same material is present in vacuoles associated with the Golgi apparatus in chondrocytes of the proliferative and hypertrophying zones.  相似文献   

2.
We examined the presence of proteoglycans in the extracellular matrix of cartilage and bone in fetal mouse radii at the ultrastructural level, using the cationic dye polyethyleneimine (PEI). After staining with this dye, the proteoglycans appeared as granules in the uncalcified bone matrix and as extended winding structures in the cartilage matrix. PEI-positive material was removed after treatment of the tissue with chondroitinase ABC. Inhibition of the proteoglycan synthesis by beta-D-xyloside resulted in smaller PEI-positive windings in the cartilage matrix. These observations suggest that the winding, PEI-positive structures represent proteoglycan aggregates. No loss of PEI-positive material in the calcified cartilage matrix was seen, suggesting that proteoglycans do not need to be removed to make the matrix calcifiable.  相似文献   

3.
A detailed histological study of the chick embryonic calvarium was carried out to characterize the effect of calcium deficiency on cell differentiation during embryonic bone formation. Calcium deficiency on cell differentiation during embryonic bone formation. Calcium deficient chick embryos, produced by means of long-term shell-less (SL) culture, developed skeletal anomalies. In addition to reduced mineralization as detected by alizarin staining, significant changes were also observed in the extracellular matrix of the embryonic bones. First, the undermineralized matrix of the calvaria of SL embryos appeared to be more acidic as shown by more intense hematoxylin staining of the trabecular regions compared to controls. Secondly, the presence of sulfated proteoglycans was suggested by specific Alcian blue staining of the calvaria of Day 14 SL embryos. In addition, indirect fluorescence immunohistochemistry confirmed the developmental appearance of type II collagen in calcium-deficient calvaria, and localized it to undermineralized regions of the bone. These observations demonstrate the emergence of a chondrogenic phenotype in a typically osteogenic tissue during, and perhaps in response to, severe systemic calcium deficiency in the developing chick embryo.  相似文献   

4.
BACKGROUND: The most comprehensive evaluation of vertebrate skeletal development involves the use of Alizarin Red S dye to stain ossified bone and various other dyes to stain cartilage. The dye used most widely to stain fetal cartilage in rodents and rabbits is Alcian Blue 8GX. However, the global supply of this specific dye has been exhausted. Several forms of the dye marketed as Alcian Blue 8GX are now available, although they are not synthesized via the original 8GX manufacturing process. METHODS: One new Alcian Blue 8GX form and two Alcian Blue dye variants were evaluated in rats and rabbits using standard staining procedures. The staining quality of these dyes were evaluated relative to the original form of Alcian Blue 8GX based on cartilage uptake of the dye, clarity of the cartilaginous components, staining intensity of the dye, and overall readability of the specimens under stereomicroscopic evaluation. RESULTS: Staining with the newer form of Alcian Blue 8GX resulted in poor staining quality. The Alcian Blue-Pyridine variant performed well, although staining intensity was less than optimal. The Alcian Blue-Tetrakis variant provided staining characteristics that were most similar to the original form of Alcian Blue 8GX. CONCLUSIONS: Alcian Blue-Tetrakis was markedly better in its ability to stain fetal cartilage than the newer form of Alcian Blue 8GX.  相似文献   

5.
The present study reports on the fine structure of human costal cartilage at different ages in order to obtain information on the morphogenesis of amianthoid fibers. Our results reveal an overall increase of collagen fibril diameter with increasing age, even in areas with no signs of amianthoid transformation. Ultrastructural evidence is presented that this increase in diameter is due to a gathering of the preexisting collagen fibrils. The age-related change in collagen fibril diameter is paralleled by changes in the composition and ultrastructural appearance of cartilage proteoglycans (as revealed by acridine orange staining). Acridine-orange-positive filaments indicative for proteoglycans are markedly reduced in size with advancing age in centrally located regions of costal cartilage. Treatment with testicular hyaluronidase previous to acridine-orange staining leaves these small proteoglycan filaments unaffected. By contrast, the filaments visible after acridine-orange staining in the extracellular matrix near to the perichondrium are susceptible to hyaluronidase treatment. Infrequently, a sharp increase in collagen fibril diameter can be observed in territorial matrix areas of degenerating chondrocytes. This observation is conspicuous at ages of 10 and 20 years. Amianthoid transformation is characterized by the appearance of collagen fibrils strictly arranged in parallel. These amianthoid fibers are embedded in a matrix rich in small acridine-orange-positive filaments similar to the proteoglycan filaments observed in centrally located matrix regions. It can be concluded that extensive remodelling not only of the collagen fibrils but also of the cartilage proteoglycans is involved in the development of amianthoid transformation.  相似文献   

6.
Summary In order to contrast anionic sites, in mouse lung alveoli, two staining procedures were applied: (a) staining with Ruthenium Red and Alcian Blue and (b) staining with Cuprolinic Blue in a critical electrolyte concentration method. The Ruthenium Red-Alcian Blue staining procedure revealed electron-dense granules in the alveolar basement membrane. The granules were closely associated with the epithelial cell membrane and continued to stain even when the procedure was carried out at a low pH, indicating the presence of sulphate groups in the granules.After staining with Cuprolinic Blue, electron-dense filaments, also closely associated with the cell membrane, became visible in the basement membrane of type I epithelial cells. Their length depended on the MgCl2 concentration used during staining. At 0.4m MgCl2, the length was mostly within the range 100–180 nm. Using a modified Cuprolinic Blue method, the appearance of the filaments closely resembled that of spread proteoglycan monomers with their side-chains condensed. The basement membrane of type II epithelial cells also contained filaments positive towards Cuprolinic Blue; their length, however, was smaller in comparison with those of type I epithelial cells. The filaments lay in one plane and provided the whole alveolus with an almost continuous sheet of anionic sites. Cuprolinic Blue staining also revealed filaments in the basement membrane of the capillary endothelial cells. Furthermore, Cuprolinic Blue-positive filaments (average length about 40 nm) became apparent in close contact with collagen fibrils and separated from each other according to the main banding period of the collagen fibrils (about 60 nm), indicating a specific ultrastructural interaction between these two components. Filaments connecting collagen fibrils with each other were also detected.  相似文献   

7.
The extracellular matrix in cultures of arterial smooth muscle cells has been examined by ultrastructural histochemistry using each of the following cationic dyes: ruthenium red, Alcian blue, acridine orange, and safranin O. All dyes exhibited an affinity for a structural component that was either preserved as a granule with ruthenium red or Alcian blue, or as an extended filament or bottlebrush structure with acridine orange or safranin O. Both granules and filaments were removed when the cultures were pretreated with chondroitinase ABC, an enzyme that degrades the glycosaminoglycan moiety of some proteoglycans. These structural components of the extracellular matrix were not observed when cultures were prepared in the absence of the cationic dyes. Labeling experiments (35S-sulfate) revealed that approximately 40% of the total labeled proteoglycans were lost during routine processing for electron microscopy (i.e., fixation through dehydration). Inclusion of any one of the cationic dyes during fixation reduced the losses to less than 1%. The extended filamentous structure preserved by safranin O and acridine orange resembled the structure of purified proteoglycans prepared from the same cultures and spread on cytochrome c monolayer films. These observations suggest that proteoglycans exist as extended bottlebrush structures within the extracellular matrix, and support the interpretation that the granular deposits observed in the ruthenium red and Alcian blue preparations most likely represent individual proteoglycan monomers that have undergone molecular collapse during processing. In addition, the dyes also exhibited an affinity for chords of fine fibrils that contained small granules and/or filaments. Both the fibrillar material and the associated granular and filamentous structures enmeshed in the fibrils resisted digestion with chondroitinase ABC.  相似文献   

8.
Synopsis The proteoglycans of cartilage are complex molecules in which chondroitin sulphate and keratan sulphate chains are covalently linked to a protein core, forming a polydisperse population of proteoglycan monomers. By interaction with hyaluronic acid and link proteins, the monomers form large macromolecular complexes.In vivo the proteoglycans mainly occur in such aggregates. In the electron microscope, the cartilaginous matrix can be seen to be made up of thin collagen fibrils and polygonal granules about 10–50 nm in diameter. Addition of the polyvalent cationic dye Ruthenium Red to glutaraldehyde and osmium tetroxide fixatives yields a dense selective staining of the matrix granules. Following a short digestion of cartilage slices with either of the chondroitin sulphate-degrading enzymes hyaluronidase and chondroitinase or with the proteolytic enzyme papain, the matrix granules were few in number or completely absent and the proteoglycan content, measured as hexosamine, decreased by up to 90%. Similarly, extraction of the cartilage with 4 M guanidine-HCl removed all matrix granules and most of the proteoglycans. From these findings, it can be concluded that the matrix granules represent proteoglycans, most probably in aggregate form, and that Ruthenium Red staining may be used to study the distribution of these macromolecules in thin sections. As a complement to chemical studies on proteoglycan structure, it is also possible to observe and measure individual molecules in the electron microscope after spreading them into a monomolecular layer with cytochromec. This technique has been applied in investigations on proteogly cans isolated from bovine nasal cartilage and other hyaline cartilages. The molecules in the monomer fractions appeared as an extended central core filament to which about 25–30 side-chain filaments were attached at various intervals. The core filament, averaging about 300 nm in length, was interpreted as representing the polysaccharide-binding part of the protein core and the side-chain filaments, averaging about 45 nm in length, as representing the clusters of chondroitin sulphate chains. Statistical treatment of the collected data indicated that no distinct subpopulations existed within the monomer fractions. The electron microscopic results correlated well with chemical data for the corresponding fractions and together with recent observations on various aggregate fractions strongly support present concepts of proteoglycan structure.Paper presented at a symposium The Changing directions of carbohydrate histochemistry at the Fifth International Congress of Cytochemistry and Histochemistry in Bucharest, Romania on September 1976.  相似文献   

9.
Proteoglycans were accurately localized in mouse pubic symphyseal tissues using the cuprolinic blue method. Specific glycosaminoglycans degradative enzymes, together with chondroitin sulfate and decorin antibodies, allowed the identification of glycosaminoglycans. Chondroitin sulfate proteoglycans were the main proteoglycans observed in hyaline cartilage, fibrocartilage, and dense connective tissue. Ultrastructurally, they were seen as electron-dense granules and filaments. The granules, rich in chondroitin sulfate chains, were exclusively found in hyaline cartilage, whereas filaments were present in cartilage, fibrocartilage, and dense connective tissue. The latter were classified by size and susceptibility to enzyme digestion into F1, F2 and F3 filaments: F1 filaments were small, thin, and collagen fibril-associated; F2 filaments were thick, heavily stained, and localized around individual collagen fibrils and between bundles of collagen fibrils; and F3 filaments were scattered throughout elastic fiber surfaces. Considering their localization, susceptibility to chondroitinase AC and immunohistochemical detection, the symphysial F1 filaments were found to be preferentially decorin substituted with chondroitin sulfate side chains. The F2 filaments were also susceptible to chondroitinase AC treatment, whereas F3 filaments could be digested by heparitinase.The data thus obtained on the localization and identification of pubic symphyseal proteoglycans in virgin mice may be useful in the study of structural modifications that occur throughout pregnancy.  相似文献   

10.
Synopsis The existence of disulphide groups in the granules of the secretory portion of the ducts of rat submandibular glands has been demonstrated with methods that reveal thiol groups formed after reducing the disulphide groups first. Disulphide groups were also demonstrated with cationic dyes by staining the cysteic acid residues obtained after oxidation with permanganate. Alcian Blue at pH 3.0 was used for this purpose. Two kinds of granules, characterized by their reactions with Alcian Blue at different pH levels, were apparent in differing stages of the same secretion.  相似文献   

11.
Bone morphogenetic protein 2B (BMP-2B) also called BMP-4 is one of a family of cartilage and bone-inductive proteins derived from bone matrix and belongs to the transforming growth factor beta (TGF-beta) superfamily. These bone-inductive proteins isolated from adult bone may be involved in bone repair. However, they may also play a role in cartilage and bone formation during embryonic development. To test whether BMP-2B influences cartilage formation by embryonic cells, recombinant human BMP-2B was applied to cultured limb bud mesoderm plated at three different densities. BMP-2B stimulated cartilage formation as assessed by Alcian blue staining and incorporation of radioactive sulfate into sulfated proteoglycans. Cells cultured at all three densities in the presence of 10 ng/ml BMP-2B formed a nearly continuous sheet of cartilage with abundant extracellular matrix and type II collagen. In addition, when cells were cultured in 0.5% serum in the presence of 10 ng/ml of BMP-2B for 5 days there was an increase in alkaline phosphatase as detected by histochemical and biochemical methods. Transforming growth factor beta isoforms (TGF-beta 1 and TGF-beta 2) inhibited sulfate incorporation into proteoglycans in a dose-dependent manner. This inhibition by TGF beta was overcome by recombinant BMP-2B. This study demonstrates that recombinant BMP-2B stimulates cartilage formation by chick limb bud mesoderm in vitro and is further modulated by TGF-beta isoforms.  相似文献   

12.
Abstract

Whole-mount staining with Alcian blue for cartilage and alizarin red for bone has been widely used for visualizing the skeletal patterns of embryos and small adult vertebrates. The possibility of decalcification by the acidic Alcian blue solution is known, but standard staining protocols do not always avoid this issue. We investigated the effects of acidity on the stainability of developing bones in stage 36 chick embryos and developed an optimal procedure for obtaining reliable results with minimal decalcification. The diaphyses of long bone rudiments and the maxillofacial membranous bones progressively lost their stainability with alizarin red when the chick embryos were soaked for long periods in the preceding acidic Alcian blue staining solution for cartilage. Unless the acidity was neutralized with an alkaline solution, the remaining acidity in the specimens rendered the pH sufficiently low to prevent the subsequent alizarin red staining of the bones. These findings indicate that the mineralizing bones at the early stages of development are labile to acidity and become decalcified more substantially during the staining process than previously appreciated. The following points are important for visualizing such labile mineralizing bones in chick embryos: 1) fixing with formaldehyde followed by soaking in 70% ethanol, 2) minimizing the time that the specimens are exposed to the acidic Alcian blue solution, and 3) neutralizing and dehydrating the specimens by an alkaline-alcohol solution immediately after the cartilage staining. When the exact onset and/or an early phase of ossification are of interest, the current double-staining procedure should be accompanied by a control single-staining procedure directed only toward bone.  相似文献   

13.
Changes in glycosaminoglycan (GAG) content and distribution are vital for joint development. However, their precise character has not been established. We have used immunohistochemistry (IHC) and "critical electrolyte" Alcian blue staining to assess such changes in developing chick and rabbit joints. IHC showed chondroitin sulfate labeling in chick epiphyseal cartilage but not in interzones. In contrast, prominent labeling for keratan sulfate (KS) was restricted to chick cartilage-interzone interfaces. In rabbit knees, KS labeling was also prominent at presumptive cavity borders, but weak in interzone and cartilage. Selective pre-digestion produced appropriate loss of label and undersulfated KS was undetectable. Quantification of Alcian blue staining by scanning and integrating microdensitometry showed prominent hyaluronan-like (HA-like) interzone staining, with chondroitin sulfate and weaker KS staining restricted to epiphyseal cartilage. Hyaluronidase decreased HA-like staining in the interzone. Surprisingly, keratanases also reduced HA-like but not sulfated GAG (sGAG-like) staining in the interzone. Chondroitinase ABC had little effect on HA-like staining but decreased sGAG staining in all regions. Rabbit joints also showed HA-like but not KS staining in the interzone and strong chondroitin sulfate-like staining in epiphyseal cartilage. Our findings show restricted KS distribution in the region close to the presumptive joint cavity of developing chick and rabbit joints. Alcian blue staining does not detect this moiety. Therefore, it appears that although histochemistry allows relatively insensitive quantitative assessment of GAGs, IHC increases these detection limits. This is particularly evident for KS, which exhibits immunolabeling patterns in joints from different species that is consistent with a conserved functional role in chondrogenesis.  相似文献   

14.
By use of the cationic dye Cuprolinic Blue in a critical electrolyte concentration method, heavily staining, generally large, filaments have been demonstrated in human lung alveoli. In some lung specimens they are abundant, while in others they are very scanty. The filaments are seen: around bundles of collagen fibrils, at places which seem electron microscopically almost empty, associated with basement membranes around elastin, and sometimes associated with individual collagen fibrils. After poststaining tiny threads--connecting the filaments--could sometimes be observed. The filaments are resistant to treatment with nitrous acid, heparitinase or pronase after prefixation. After digestion with chondroitinase ABC, chondroitinase AC or pronase without prefixation, the filaments are no longer detectable. The tiny threads are chondroitinase ABC resistant. It is concluded that the Cuprolinic Blue-positive filaments represent proteoglycans which contain chondroitin sulfate and/or glucuronic acid-rich dermatan sulfate. The possible role of these proteoglycans in tissue repair is discussed.  相似文献   

15.
Summary To test the value ofStreptomyces hyaluronidase in carbohydrate histochemistry, the effects of digestion with the enzyme on the staining of cartilage and non-cartilaginous tissues by Alcian Blue (AB) pH 1.0, AB pH 2.5, high iron diamine, low iron diamine, aldehyde fuchsin, dialysed iron-ferrocyanide and AB pH 2.5-periodic acid-Schiff were studied by light microscopy. The results obtained lead to the conclusion that theStreptomyces enzyme releases not only hyaluronic acid but also chondroitin sulphates and keratan sulphates in cartilage. Since hyaluronic acid is known to be linked to chondroitin sulphate proteoglycans, the enzyme is of limited value in localizing hyaluronic acid in cartilage. However, it is useful in localizing hyaluronic acid in most non-cartilaginous tissues.  相似文献   

16.
We tested various cationic dyes chemically related to ruthenium hexaammine trichloride (RHT) [i.e., the RHT-cyclohexanedione complex (RHT-CC), pentaamine ruthenium N-dimethylphenylenediimine trichloride (PRT), tris-(bipyridyl)ruthenium (II) chloride (TRC), tris (bipyridyl) iron (II) chloride (TIC), and cobalt hexaammine trichloride (CHT)] for their effectiveness in precipitating cartilage matrix proteoglycans in situ. Dyes were introduced into media at the onset of processing and were present throughout both aldehyde fixation and osmium tetroxide post-fixation. Contrary to expectation, most of the dye-proteoglycan complexes generated and stable under aldehyde fixation conditions were found to be unstable during post-fixation despite the continuing presence of the dye. A similar phenomenon was also found for the cationic dyes commonly used for precipitation of proteoglycans in cartilage tissue sections (such as Acridine Orange, Alcian Blue, Azure A, Methylene Blue, and Ruthenium Red). Only two dyes, i.e., RHT and the newly tested RHT-CC, formed proteoglycan precipitates sufficiently stable to resist disruption and extraction during osmium tetroxide post-fixation. The latter may be particularly useful in semiquantitative analyses of proteoglycan content in unstained tissue sections owing to its intense brown-black color. For applications in which the osmium tetroxide post-fixation step may be omitted, TRC and PRT may also be valuable for semiquantitative histochemistry by virtue of their stable fluorescence and intense violet color signals, respectively.  相似文献   

17.
P B?ck 《Histochemistry》1978,58(4):343-345
Lymphatic anchoring filaments are stained by means of histochemical methods that demonstrate disulfide-groups. Thiosulfation of sections either followed by aldehyde-fuchsin staining or by Alcian Blue +0.8 M MgCl2 staining has been used. Lymphatic anchoring filaments display striking fine structural similarities to "elastic fiber microfibrils" and both kinds of fibers are characterized by disulfide content.  相似文献   

18.
Summary Mucosal mast cells (MMC) and connective tissue mast cells (CTMC) of the rat contain different proteoglycans, which can be distinguished using histochemical methods. The chondroitin sulphate proteoglycan of the MMC, unlike the heparin of the CTMC, does not show fluorescent berberine binding, is susceptible to aldehyde fixatives and stains preferentially with Alcian Blue in a staining sequence with Safranin. The majority of the dermal mast cells are typical CTMC and are located in the deep part of the dermis. Subepidermal mast cells are comparatively few in normal rats but numerous in athymic rats and mice. These cells differ from other dermal mast cells in that they stain preferentially with Alcian Blue and they appear to contain little histamine. We examined some of the histochemical properties of the skin mast cells of female PVG-rnu/rnu rats and their heterozygous littermates aged from 5 to 29 weeks. The thiazine dye-binding of the subepidermal mast cells was partially blocked by formaldehyde fixation and only about half of them showed a weakly fluorescent berberine binding. The critical electrolyte concentration of the Alcian Blue staining of the subepidermal mast cells was between that of CTMC and MMC. Deaminative cleavage with nitrous acid abolished the staining of all skin mast cells, while that of the MMC was unaffected. There were no statistically significant differences in the staining patterns of the dermal mast cells between different ages or groups of rat. These results indicate that the subepidermal mast cells contain a heparin proteoglycan which is, however, different from that of the typical CTMC of other sites. They thus appear to represent a second example of a mast cell within a defined anatomical location exhibiting a distinct proteoglycan expression.  相似文献   

19.
Summary Acridine Orange in concentrations from 0.01% to 0.2% was added to the first fixative solution in order to stain vibratome sections and small blocks of the articular cartilage of 2 month old rats. The interterritorial matrix of the radial or deep zone (zone 3) was examined. It contained reaction products with different morphology depending on the specimens used. In vibratome sections filaments were seen arranged in a homogenous pattern and changing in size with the concentration of the dye: diluted solutions produced finer filaments than concentrated ones. In contrast, in tissue blocks the staining pattern was not altered by different concentrations of Acridine Orange. However, with increase of the distance from the surface of the specimens the size of the filaments gradually decreased and formed a finer network. Since after preincubation with chondroitin ABC lyase only minute reaction products remained, an interaction of the dye with the sulphated glycosaminoglycans of the proteoglycans in the articular cartilage is suggested.The experiments show that by using mainly monocationic monomers of Acridine Orange the proteoglycans can be stained in a more expanded state than with polycationic dye polymers.  相似文献   

20.
Stage-related capacity for limb chondrogenesis in cell culture.   总被引:8,自引:0,他引:8  
Cells from wing buds of varying-stage chick embryos were dissociated and grown in culture to test their capacity for cartilage differentiation. Micro-mass cultures were initiated with a cell layer greater than confluency, which occupied a restricted area of the culture dish surface (10–13 mm2). Cells from stage 24 chick embryo wing buds (prior to the appearance of cartilage in vivo) undergo cartilage differentiation in such cultures. Typically, during the first 1–2 days of culture, cells form aggregates (clusters of cells with a density 1.5 times greater than that of the surrounding nonaggregate area). By Day 3, virtually all aggregates differentiate into cartilage nodules which are easily recognized by their Alcian blue staining (pH 1.0) extracellular matrix. Subsequently, nodules increase in size, and adjacent nodules begin to coalesce. Micro-mass cultures were used to test the chondrogenic capacity of wing bud cells from chick embryos representing the different stages of limb development up to the appearance of cartilage in vivo (stages 17–25). Cells from embryo stages 21–24 form aggregates which differentiate into cartilage nodules in vitro with equal capacity (scored as number of nodules per culture). In contrast, cells from embryo stages 17–19 form aggregates in similar numbers, but these aggregates never differentiate into nodules under routine conditions. However, aggregates which form in cultures of stage 19 wing bud cells do differentiate into cartilage nodules if exposed to dibutyryl cyclic AMP and theophylline. Cells from stage 20 embryos manifest a varying capacity to form cartilage nodules; apparently, this is a transition stage. Cells from stage 25 embryos produce cartilage in vitro without forming either aggregates or nodules. Based on the results presented in this paper, the authors propose a model for cartilage differentiation from embryonic mesoderm cells involving: (1) aggregation, (2) acquisition of the ability to respond to the environment in the aggregate, (3) elevated intracellular cyclic AMP levels, and (4) stabilization and expression of cartilage phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号