首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In resurrection plants and yeast, trehalose has a function in stress protection, but the absence of measurable amounts of trehalose in other plants precludes such a function. The identification of a trehalose biosynthetic pathway in angiosperms raises questions on the function of trehalose metabolism in nonresurrection plants. We previously identified a mutant in the Arabidopsis trehalose biosynthesis gene AtTPS1. Plants homozygous for the tps1 mutation do not develop mature seeds (Eastmond et al., 2002). AtTPS1 expression analysis and the spatial and temporal activity of its promoter suggest that this gene is active outside the seed-filling stage of development as well. A generally low expression is observed in all organs analyzed, peaking in metabolic sinks such as flower buds, ripening siliques, and young rosette leaves. The arrested tps1/tps1 embryonic state could be rescued using a dexamethasone-inducible AtTPS1 expression system enabling generation of homozygous mutant plants. When depleted in AtTPS1 expression, such mutant plants show reduced root growth, which is correlated with a reduced root meristematic region. Moreover, tps1/tps1 plants are retarded in growth and remain generative during their lifetime. Absence of Trehalose-6-Phosphate Synthase 1 in Arabidopsis plants precludes transition to flowering.  相似文献   

2.
玉米Ubi-1启动子在可育转基因玉米植株中的表达活性   总被引:2,自引:0,他引:2  
本工作将玉米泛素基因-1启动子(Ubi-1)与大肠杆菌β-葡萄糖苷酸酶基因(gus,uidA)的编码区融合,通过基因枪粒子轰击方法转化来自水成熟胚盾片组织的I-型愈伤组织,经PPT选择获得可育的玉米转基因植株,并采用组织化学方法分析了Ubi-1启动子驱动的gus基因在不同组织,细胞中的表达活性,发现gus基因在除花药壁以外的其它所试组织中均可以有效表达。Ubi:GUS在花粉,卵细胞中T1代转基因植株未成熟胚中的表达显示该启动子在植株发育的早期阶段即具有活性。对T0代转基因植株的花粉进行GUS组织化学染色,gus基因呈1:1分离,显示外源基因在转基因植株中以孟德尔方式遗传。同时发现,使用玉米本身的启动子Ubi-1可以降低外源基因在转基因玉米中的拷贝数,进而避免基因沉默现象的发生。目前已得到第二代转基因种子。  相似文献   

3.
Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid–host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g?1 dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant.  相似文献   

4.
Trehalose 6-phosphate   总被引:1,自引:0,他引:1  
Trehalose 6-phosphate (T6P) is a sugar signal of emerging significance. It is an essential component of the mechanisms that coordinate metabolism with plant growth adaptation and development. Its significance began to dawn when genetic modification of the trehalose pathway produced dramatic phenotypes, before the genetic proliferation of the trehalose pathway in plants was fully realised. T6P regulates sugar utilization and starch metabolism and interacts with other signalling pathways, including those mediated by plant hormones. Trehalose phosphate synthases (TPSs) and trehalose phosphate phosphatases are regulated at the gene level by sugars, nitrate, cytokinin and abscisic acid. TPSs are also regulated post-translationally. Mechanistic details of how T6P signals are emerging, but still sparse. Nevertheless, even at this stage, targeting central regulators such as T6P offers promise in crop improvement.  相似文献   

5.
6.
Jang IC  Oh SJ  Seo JS  Choi WB  Song SI  Kim CH  Kim YS  Seo HS  Choi YD  Nahm BH  Kim JK 《Plant physiology》2003,131(2):516-524
Trehalose plays an important role in stress tolerance in plants. Trehalose-producing, transgenic rice (Oryza sativa) plants were generated by the introduction of a gene encoding a bifunctional fusion (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of Escherichia coli, under the control of the maize (Zea mays) ubiquitin promoter (Ubi1). The high catalytic efficiency (Seo et al., 2000) of the fusion enzyme and the single-gene engineering strategy make this an attractive candidate for high-level production of trehalose; it has the added advantage of reducing the accumulation of potentially deleterious T-6-P. The trehalose levels in leaf and seed extracts from Ubi1::TPSP plants were increased up to 1.076 mg g fresh weight(-1). This level was 200-fold higher than that of transgenic tobacco (Nicotiana tabacum) plants transformed independently with either TPS or TPP expression cassettes. The carbohydrate profiles were significantly altered in the seeds, but not in the leaves, of Ubi1::TPSP plants. It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and root morphology was altered. Interestingly, our Ubi1::TPSP plants showed no growth inhibition or visible phenotypic alterations despite the high-level production of trehalose. Moreover, trehalose accumulation in Ubi1::TPSP plants resulted in increased tolerance to drought, salt, and cold, as shown by chlorophyll fluorescence and growth inhibition analyses. Thus, our results suggest that trehalose acts as a global protectant against abiotic stress, and that rice is more tolerant to trehalose synthesis than dicots.  相似文献   

7.
Axenically grown Arabidopsis thaliana plants were analysed for the occurrence of trehalose. Using gas chromatography-mass spectrometry (GC-MS) analysis, trehalose was unambiguously identified in extracts from Arabidopsis inflorescences. In a variety of organisms, the synthesis of trehalose is catalysed by trehalose-6-phosphate synthase (TPS; EC 2.4.1.15) and trehalose-6-phosphate phosphatase (TPP; EC 3.1.3.12). Based on EST (expressed sequence tag) sequences, three full-length Arabidopsis cDNAs whose predicted protein sequences show extensive homologies to known TPS and TPP proteins were amplified by RACE-PCR. The expression of the corresponding genes, AtTPSA, AtTPSB and AtTPSC, and of the previously described TPS gene, AtTPS1, was analysed by quantitative RT-PCR. All of the genes were expressed in the rosette leaves, stems and flowers of Arabidopsis plants and, to a lower extent, in the roots. To study the role of the Arabidopsis genes, the AtTPSA and AtTPSC cDNAs were expressed in Saccharomyces cerevisiae mutants deficient in trehalose synthesis. In contrast to AtTPS1, expression of AtTPSA and AtTPSC in the tps1 mutant lacking TPS activity did not complement trehalose formation after heat shock or growth on glucose. In addition, no TPP function could be identified for AtTPSA and AtTPSC in complementation studies with the S. cerevisiae tps2 mutant lacking TPP activity. The results indicate that while AtTPS1 is involved in the formation of trehalose in Arabidopsis, some of the Arabidopsis genes with homologies to known TPS/TPP genes encode proteins lacking catalytic activity in trehalose synthesis.  相似文献   

8.
大肠杆菌\%otsA\%基因的克隆和表达   总被引:2,自引:0,他引:2  
用PCR方法扩增了1.5kb的otsA基因片段,将该片段连接到多拷贝克隆载体后转化otsBA缺失和otsA缺陷的大肠杆菌菌株,使转化株重新获得otsA基因功能。生长曲线表明转化株在高渗培养基中生长良好,薄层层析法(TLC)检测海藻糖实验说明转化株细胞诱导后合成海藻糖,otsA基因的克隆和表达为赋予转基因植物抗高渗、耐干旱能力提供了实验依据和材料。  相似文献   

9.
植物海藻糖代谢及海藻糖-6-磷酸信号研究进展   总被引:2,自引:0,他引:2  
海藻糖代谢和海藻糖-6-磷酸(T6P)信号途径在植物生长和发育过程中具有重要的调控作用。T6P是海藻糖的代谢前体,是植物响应碳元素可用性、调控生长发育的关键信号分子。植物体中除了自身的海藻糖合成途径外,由病原菌产生的海藻糖或T6P能够导致植物代谢和发育的重新编程。植物不同阶段的生长发育,包括胚胎发育、幼苗生长、成花诱导及叶片衰老等,都受T6P的调控。T6P信号的一个关键互作因子是蔗糖非发酵相关激酶1(SnRKl),T6P能够抑制SnRK1的催化活性,进而调控植物的生长和发育过程。  相似文献   

10.
The vacuole occupies most of the volume of plant cells; thus, the tonoplast marker delta-tonoplast intrinsic protein-green fluorescent protein delineates cell shape, for example, in epidermis. This permits rapid identification of mutants. Using this strategy, we identified the cell shape phenotype-1 (csp-1) mutant in Arabidopsis thaliana. Beyond an absence of lobes in pavement cells, phenotypes included reduced trichome branching, altered leaf serration and stem branching, and increased stomatal density. This result from a point mutation in AtTPS6 encoding a conserved amino-terminal domain, thought to catalyze trehalose-6-phosphate synthesis and a carboxy-terminal phosphatase domain, is catalyzing a two-step conversion to trehalose. Expression of AtTPS6 in the Saccharomyces cerevisiae mutants tps1 (encoding a synthase domain) and tps2 (encoding synthase and phosphatase domains) indicates that AtTPS6 is an active trehalose synthase. AtTPS6 fully complemented defects in csp-1. Mutations in class I genes (AtTPS1-AtTPS4) indicate a role in regulating starch storage, resistance to drought, and inflorescence architecture. Class II genes (AtTPS5-AtTPS11) encode multifunctional enzymes having synthase and phosphatase activity. We show that class II AtTPS6 regulates plant architecture, shape of epidermal pavement cells, and branching of trichomes. Thus, beyond a role in development, we demonstrate that the class II gene AtTPS6 is important for controlling cellular morphogenesis.  相似文献   

11.
12.
The improvement of commercial maize lines via biotechnological approaches is limited by the lack of a transformation system that is tissue culture free. In this paper, the development of a genetic transformation system is presented using electroporation for gene delivery and seed-derived embryo as the gene target. Plasmid DNA (pBARGUS), which contained the selectablebar gene for resistance to the herbicide Basta and the screenablegus gene, was delivered into enzymatically wounded mature maize embryos via electroporation. Transformed plants were identified by their ability to grow on a selective medium containing 30 mg/L of phosphinothricin. Southern hybridization, plant resistance to the application of Basta, GUS expression, and segregation analysis indicated that a functionalbar gene had integrated into the maize genome and was inherited in a mendelian fashion by the progeny.  相似文献   

13.
Trehalose is a non-reducing disaccharide of glucose that functions as a protectant in the stabilization of biological structures and enhances the tolerance of organisms to abiotic stress. In the present study, we report on the expression of the Grifolafrondosa Fr. trehalose synthase (TSase) gene for manipulating abiotic stress tolerance in tobacco (Nicotiana tabaccum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and was transferred into tobacco by Agrobacterium tumefaciens EHA105. Compared with non-transgenic plants, transgenic plants were able to accumulate high levels of products of trehalose, which were increased up to 2.126-2.556 mg/g FW, although levels were undetectable in non-transgenic plants. This level of trehalose in transgenic plants was 400-fold higher than that of transgenic tobacco plants cotransformed with Escherichia coli TPS and TPP on independent expression cassettes, twofold higher than that of transgenic rice plants transformed with a bifunctional fusion gene (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of E. coli, and 12-fold higher than that of transgenic tobacco plants transformed the yeast TPS1 gene.It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and had morphological alterations of their roots. Interestingly, our transgenic plants have obvious morphological changes, including thick and deep-coloured leaves, but show no growth inhibition; moreover, these morphological changes can restore to normal type in T2 progenies. Trehalose accumulation in 35S-35S:TSase plants resulted in increased tolerance to drought and salt, as shown by the results of tests on drought, salt tolerance, and drought physiological indices, such as water content in excised leaves, malondialdehyde content, chlorophyll a and b contents, and the activity of superoxide dismutase and peroxidase in excised leaves. These results suggest that transgenic plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought and salt.  相似文献   

14.
In yeast, trehalose-6-phosphate synthase is a key enzyme for trehalose biosynthesis, encoded by the structural gene TPS1. Trehalose affects sugar metabolism as well as osmoprotection against several environmental stresses, such as heat and desiccation. The TPS1 gene of Saccharomyces cerevisiae was engineered under the control of the CaMV 35S promoter for constitutive expression in transgenic potato plants by Ti-plasmid of Agrobacterium-mediated transformation. The resulting TPS1 transgenic potato plants exhibited various morphological phenotypes in culture tubes, ranging from normal to severely retarded growth, including dwarfish growth, yellowish lancet-shaped leaves, and aberrant root development. However, the plants recovered from these negative growth effects when grown in a soil mixture. The TPS1 transgenic potato plants showed significantly increased drought resistance. These results suggest that the production of trehalose not only affects plant development but also improves drought tolerance.  相似文献   

15.
Maize is a cereal crop that is grown widely throughout the world in a range of agro-ecological environments. Trehalose is a nonreducing disaccharide of glucose that has been associated with tolerance to different stress conditions, including salt and drought. Bioinformatic analysis of genes involved in trehalose biosynthesis and degradation in maize has not been reported to date. Through systematic analysis, 1 degradation-related and 36 trehalose biosynthesis-related genes were identified. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs, isolated from other plant species such as Arabidopsis and rice, were revealed. Using a comprehensive approach, the intron/exon structures and expression patterns of all identified genes and their responses to salt stress, jasmonic acid, and abscisic acid treatment were analyzed. Microarray data demonstrated that some of the genes show differential, organ-specific expression patterns in the 60 different developmental stages of maize. It was discovered that some of the key enzymes such as hexokinase, trehalose-6-phosphate synthase, and trehalose-6-phosphate phosphatase are encoded by multiple gene members with different expression patterns. The results highlight the complexity of trehalose metabolism and provide useful information for improving maize stress tolerance through genetic engineering.  相似文献   

16.
17.
利用农杆菌介导法将番茄红素β-环化酶基因(Lycb)转入由玉米自交系天塔五号植株,分析基因在T0转化及后代的遗传情况,结果表明,在27株T0转基因植株中,PCR初步检测后8株呈阳性;将T1代转基因植株以株系为单位用200mg/L草铵膦抗性筛选后,收获抗性植株种子。T2代转基因植株进一步进行PCR、RT-PCR和田间草铵膦涂抹检测,结果表明,PCR、RT-PCR为阳性的6个株系植株均具有草铵膦抗性。选取6株阳性植株提取叶片总类胡萝卜素,经HPLC分析其β-胡萝卜素含量显著高于野生型,表明目的基因Lycb成功的转入玉米,并得到了稳定遗传。  相似文献   

18.
19.
Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号