首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Levels of carbonic anhydrase activity were determined on a total (60 EUmg?1 protein), external (7.36 EU), internal (50.14 EU) and protoplast (15.63 EU) basis for Ranunculus penicillatus (Dumort.) Bab ssp. pseudofluitans (Syme) S. Webster, a freshwater aquatic macrophyte, by conventional electrometric methods. The site of activity of ‘external’ carbonic anhydrase (CA) has been visualized using 5-Dimethylaminonapthalene-1- sulphonamide (DNSA)-CA fluorescent complex formation, and is postulated to be closely associated with the epidermal cell wall. The photosynthetic rate of R. penicillatus ssp. pseudofluitans at pH 9.0 is in excess of the uncatalysed rate of production of CO2 from HCO?3, and this plant is therefore using HCO?3 for photosynthesis. The possible contribution of CA activity to inorganic carbon assimilation, and specifically to transport of HCO?3, in submerged aquatic plants is discussed.  相似文献   

2.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

3.
Protoplasts were prepared from Ulva fasciata Delile, and their photosynthetic performance was measured and compared with that of thalli discs. These protoplasts maintained maximal rates of photosynthesis as high as those of thalli (up to 300 μmol O2·mg chlorophyll?1·h?1) for several hours after preparation and were therefore considered suitable for kinetic studies of inorganic carbon utilization. The photosynthetic K1/2(inorganic carbon) at pH 6.1 was 3.8 μM and increased to 67, 158, and 1410 μM at the pH values 7.0, 7.9, and 8.9, respectively. Compared with these protoplasts, thalli had a much lower affinity for CO2 but approximately the same affinity for HCO3?. Comparisons between rates of photosynthesis and the spontaneous dehydration of HCO3? (at 50 μM inorganic carbon) revealed that photosynthesis of both protoplasts (which lacked apparent activity of extracellular/surface-bound carbonic anhydrase) and thalli (which were only 25% inhibited by the external carbonic anhydrase inhibitor acetazolamide) could not be supported by CO2 formation in the medium at the higher pH values, indicating HCO3? uptake. Since both protoplasts and thalli were sensitive to 4,4′-diisothiocyanostilbene-2,2′-disulfonate, we suggest that HCO3? transport was facilitated by the membrane-located anion exchange protein recently reported to function in certain Ulva thalli. These findings suggest that the presence of a cell wall may constitute a diffusion barrier for CO2, but not for HCO3?, utilization under natural seawater conditions.  相似文献   

4.
Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic 14C incorporation when CO2 or HCO3 serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO2 or HCO3) and experimentally derived time-courses of 14C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO2 and HCO3 transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO2 or HCO3 uptake relies upon monitoring changes in the intracellular specific activity (by 14C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO2-HCO3 interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of 14C incorporation provides two methods by which any contribution of HCO3 ions to net photosynthetic carbon uptake can be estimated.  相似文献   

5.
A simple model based on HCO3 transport has been developed to relate photosynthesis and inorganic carbon fluxes for the marine cyanobacterium, Synechococcus sp. Nägeli (strain RRIMP N1). Predicted relationships between inorganic carbon transport, CO2 fixation, internal carbonic anhydrase activity, and leakage of CO2 out of the cell, allow comparisons to be made with experimentally obtained data. Measurements of inorganic carbon fluxes and internal inorganic carbon pool sizes in these cells were made by monitoring time-courses of CO2 changes (using a mass spectrometer) during light/dark transients. At just saturating CO2 conditions, total inorganic carbon transport did not exceed net CO2 fixation by more than 30%. This indicates CO2 leakage similar to that estimated for C4 plants.

For this leakage rate, the model predicts the cell would need a conductance to CO2 of around 10−5 centimeters per second. This is similar to estimates made for the same cells using inorganic carbon pool sizes and CO2 efflux measurements. The model predicts that carbonic anhydrase is necessary internally to allow a sufficiently fast rate of CO2 production to prevent a large accumulation of HCO3. Intact cells show light stimulated carbonic anhydrase activity when assayed using 18O-labeled CO2 techniques. This is also supported by low but detectable levels of carbonic anhydrase activity in cell extracts, sufficient to meet the requirements of the model.

  相似文献   

6.
Inorganic carbon acquisition has been investigated in the marine haptophyte Isochrysis galbana. External carbonic anhydrase (CA) was present in air‐grown (0.034% CO2) cells but completely repressed in high (3%) CO2‐grown cells. External CA was not inhibited by 1.0 mM acetazolamide. The capacity of cells to take up bicarbonate was examined by comparing the rate of photosynthetic O2 evolution with the calculated rate of spontaneous CO2 supply; at pH 8.2 the rates of O2 evolution exceeded the CO2 supply rate 14‐fold, indicating that this alga was able to take up HCO3 ? . Monitoring CO2 concentrations by mass spectrometry showed that suspensions of high CO2‐grown cells caused a rapid drop in the extracellular CO2 in the light and addition of bovine CA raised the CO2 concentration by restoring the HCO3 ? ‐CO2 equilibrium, indicating that cells were maintaining the CO2 in the medium below its equilibrium value during photosynthesis. A rapid increase in extracellular CO2 concentration occurred on darkening the cells, indicating that the cells had accumulated an internal pool of unfixed inorganic carbon. Active CO2 uptake was blocked by the photosynthetic electron transport inhibitor 3‐(3′,4′‐dichlorphenyl)‐1,1‐dimethylurea, indicating that CO2 transport was supported by photosynthetic reactions. These results demonstrate that this species has the capacity to take up HCO3 ? and CO2 actively as sources of substrate for photosynthesis and that inorganic carbon transport is not repressed by growth on high CO2, although external CA expression is regulated by CO2 concentration.  相似文献   

7.
Uptake, efflux and utilization of inorganic carbon were investigated in the marine eustigmatophyte Nannochloropsis sp. grown under an air level of CO2. Maximal photosynthetic rate was hardly affected by raising the pH porn 5.0 to 9.0. The apparent photosynthetic affinity for dissolved inorganic carbon (DIC) was 35 μM DIC between pH 6.5 to 9.0, but increased approximately threefold at pH 5.0 suggesting that HCO3- was the main DIC species used from the medium. No external carbonic anhydrase (CA) activity could be detected by the pH drift method. However, application of ethoxyzolamide (an inhibitor of CA) resulted an a significant inhibition of photosynthetic O2 evolution and carbon utilization, suggesting involvement of internal CA or CA-like activity in DIC utilization. Under high light conditions, the rate of HCO3? uptake and its internal conversion to CO2 apparently exceeded the rate of carbon fixation, resulting in a large leak of CO2 from the cells to the external medium. When the cells were exposed to low DIC concentrations, the ratio of internal to external DIC concentration was about eight. On the other hand, in the presence of 2 mM DIC, conditions prevailing in the marine environment, the internal concentration of DIC was only 50% higher than the external one.  相似文献   

8.
Utilization of Inorganic Carbon by Ulva lactuca   总被引:2,自引:0,他引:2  
Drechsler Z  Beer S 《Plant physiology》1991,97(4):1439-1444
Thalli discs of the marine macroalga Ulva lactuca were given inorganic carbon in the form of HCO3, and the progression of photosynthetic O2 evolution was followed and compared with predicted O2 evolution as based on calculated external formation of CO2 (extracellular carbonic anhydrase was not present in this species) and its carboxylation (according to the Km(CO2) of ribulose-1,5-bisphosphate carboxylase/oxygenase), at two different pHs, assuming a photosynthetic quotient of 1. The Km(inorganic carbon) was some 2.5 times lower at pH 5.6 than at the natural seawater pH of 8.2, whereas Vmax was similar under the two conditions, indicating that the unnaturally low pH per se had no adverse effect on U. lactuca's photosynthetic performance. These results, therefore, could be evaluated with regard to differential CO2 and HCO3 utilization. The photosynthetic performance observed at the lower pH largely followed that predicted, with a slight discrepancy probably reflecting a minor diffusion barrier to CO2 uptake. At pH 8.2, however, dehydration rates were too slow to supply CO2 for the measured photosynthetic response. Given the absence of external carbonic anhydrase activity, this finding supports the view that HCO3 transport provides higher than external concentrations of CO2 at the ribulose-1,5-bisphosphate carboxylase/oxygenase site. Uptake of HCO3 by U. lactuca was further indicated by the effects of potential inhibitors at pH 8.2. The alleged band 3 membrane anion exchange protein inhibitor 4,4′-diisothiocyanostilbene-2,2′disulphonate reduced photosynthetic rates only when HCO3 (but not CO2) could be the extracellular inorganic carbon form taken up. A similar, but less drastic, HCO3-competitive inhibition of photosynthesis was obtained with Kl and KNO3. It is suggested that, under ambient conditions, HCO3 is transported into cells at defined sites either via facilitated diffusion or active uptake, and that such transport is the basis for elevated internal [CO2] at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation.  相似文献   

9.
The leakage of various inorganic carbon species from air-grown cells of Synechococcus UTEX 625 was investigated after a light to dark transition or during a light period using a mass spectrometer under a wide variety of experimental conditions. Total inorganic carbon efflux and CO2 efflux during the initial period of darkness were measured with or without carbonic anhydrase in the reaction medium respectively. The HCO3? efflux after a light to dark transition was estimated by difference. Carbon dioxide efflux in the light was measured by inhibiting CO2 transport with either Na2S or COS3 or quenching the 13C inorganic carbon transport by the addition of 12C inorganic carbon in excess. In cells in which CO2 fixation was inhibited, when only the HCO3? transport system was fully operative, CO2 effluxed continuously during the light period at a rate equal to about 25% of that in darkness. When only the CO2 transport system was operative, HCO3? effluxed during the light period. The difference between the light and dark efflux rates was consistent with a 0.6 unit decrease in the intracellular pH upon darkening the cells. The permeabilities of the cell for CO2 (2.94 ± 0.14 ± 10?8ms?1; mean ± SE, n=137) and HCO3? (1.4–1.7 ± 10?9 ms?1) were calculated.  相似文献   

10.
The green marine macroalga Ulva lactuca L. was found to be able to utilize HCO3? from sea water in two ways. When grown in flowing natural sea water at 16°C under constant dim irradiance, photosynthesis at pH8.4 was suppressed by acetazolamide but unaffected by 4,4′-diisothiocyanostilbene-2,2′-disulphonate. These responses indicate that photosynthetic HCO3? utilization was via extracellular carbonic anhydrase (CA) -mediated dehydration followed by CO2 uptake. The algae were therefore described as being in a ‘CA state’. If treated for more than 10 h in a sea water flow-through system at pH9.8, these thalli became insensitive to acetazolamide but sensitive to 4,4′-diisothiocyanostilbene-2,2′-disulphonate. This suggests the involvement of an anion exchanger (AE) in the direct uptake of HCO3?, and these plants were accordingly described as being in an ‘AE state’. Such thalli showed an approximately 10-fold higher apparent affinity for HCO3? (at pH9.4) than those in the ‘CA state’, while thalli of both states showed a very high apparent affinity for CO2. These results suggest that the two modes of HCO3? utilization constitute two ways in which inorganic carbon may enter the Ulva lactuca cells, with the direct entry of HCO3?, characterizing the ‘AE state’, being inducible and possibly functioning as a complementary uptake system at high external pH values (e.g. under conditions conducive to high photosynthetic rates). Both mechanisms of entry appear to be connected to concentrating CO2 inside the cell, probably via a separate mechanism operating intracellularly.  相似文献   

11.
Chlorella emersonii Shihira et Krauss var. emersonii exhibits ‘C4-like’ gas exchange characteristics when grown at air levels of CO2, but is ‘C3-like’ when grown with extra CO2. The total inorganic carbon concentration, and the free CO2 concentration, averaged over the cell interior are higher in air-adapted cells than can be accounted for by passive CO2 equilibration from the medium and the mean intracellular pH value. The ‘extra’ inorganic C in the air-grown cells probably cannot all be accounted for in terms of binding to proteins and requires an active transport process to account for it. The electrical potential of the cell interior becomes more negative when the ‘CO2 concentrating mechanism’ is operative; this is most readily explained if the active step in inorganic C accumulation is primary active uniport of HCO3?. Since the ‘CO2 concentrating mechanism’ can operate when CO2 is the species crossing the outer permeation barrier, it is suggested that the site of active HCO3? transport in Chlorella (and other eukaryotes) is the chloroplast envelope, and the plasmalemma in cyanobacteria. This scheme explains the obligatory role of the de-repressed carbonic anhydrase in C4-like photosynthesis in algae, but some other data support an explanation of C4-like photosynthesis in terms of special properties of carbonic anhydrase as a carbon donor to RuBP carboxylase-oxygenase.  相似文献   

12.
We report the changes in the concentrations and 18O contents of extracellular CO2 and HCO3 in suspensions of Synechococcus sp. (UTEX 2380) using membrane inlet mass spectrometry. This marine cyanobacterium is known to have an active uptake mechanism for inorganic carbon. Measuring 18O exchange between CO2 and water, we have found the intracellular carbonic anhydrase activity to be equivalent to 20 times the uncatalyzed CO2 hydration rate in different samples of cells that were grown on bubbled air (low-CO2 conditions). This activity was only weakly inhibited by ethoxzolamide with an I50 near 7 to 10 micromolar in lysed cell suspensions. We have shown that even with CO2-starved cells there is considerable generation of CO2 from intracellular stores, a factor that can cause errors in measurement of net CO2 uptake unless accounted for. It was demonstrated that use of 13C-labeled inorganic carbon outside the cell can correct for such errors in mass spectrometric measurement. Oxygen-18 depletion experiments show that in the light, CO2 readily passes across the cell membrane to the sites of intracellular carbonic anhydrase. Although HCO3 was readily taken up by the cells, these experiments shown that there is no significant efflux of HCO3 from Synechococcus.  相似文献   

13.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

14.
Scenedesmus cells grown on high CO2, when adapted to air levels of CO2 for 4 to 6 hours in the light, formed two concentrating processes for dissolved inorganic carbon: one for utilizing CO2 from medium of pH 5 to 8 and one for bicarbonate accumulation from medium of pH 7 to 11. Similar results were obtained with assays by photosynthetic O2 evolution or by accumulation of dissolved inorganic carbon inside the cells. The CO2 pump with K0.5 for O2 evolution of less than 5 micromolar CO2 was similar to that previously studied with other green algae such as Chlamydomonas and was accompanied by plasmalemma carbonic anhydrase formation. The HCO3 concentrating process between pH 8 to 10 lowered the K0.5 (DIC) from 7300 micromolar HCO3 in high CO2 grown Scenedesmus to 10 micromolar in air-adapted cells. The HCO3 pump was inhibited by vanadate (Ki of 150 micromolar), as if it involved an ATPase linked HCO3 transporter. The CO2 pump was formed on low CO2 by high-CO2 grown cells in growth medium within 4 to 6 hours in the light. The alkaline HCO3 pump was partially activated on low CO2 within 2 hours in the light or after 8 hours in the dark. Full activation of the HCO3 pump at pH 9 had requirements similar to the activation of the CO2 pump. Air-grown or air-adapted cells at pH 7.2 or 9 accumulated in one minute 1 to 2 millimolar inorganic carbon in the light or 0.44 millimolar in the dark from 150 micromolar in the media, whereas CO2-grown cells did not accumulate inorganic carbon. A general scheme for concentrating dissolved inorganic carbon by unicellular green algae utilizes a vanadate-sensitive transporter at the chloroplast envelope for the CO2 pump and in some algae an additional vanadate-sensitive plasmalemma HCO3 transporter for a HCO3 pump.  相似文献   

15.
CO2 uptake and transport in leaf mesophyll cells   总被引:4,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   

16.
Active CO(2) Transport by the Green Alga Chlamydomonas reinhardtii   总被引:6,自引:6,他引:0       下载免费PDF全文
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

17.
The role of external carbonic anhydrase in inorganic carbon acquisition and photosynthesis by Chlamydomonas reinhardii at alkaline pH (8.0) was studied. Acetazolamide (50 micromolar) completely inhibited external carbonic anhydrase (CA) activity as determined from isotopic disequilibrium experiments. Under these conditions, photosynthetic rates at low dissolved inorganic carbon (DIC) were far greater than could be maintained by CO2 supplied from the spontaneous dehydration of HCO3 thereby showing that C. reinhardii has the ability to utilize exogenous HCO3. Acetazolamide increased the concentration of DIC required to half-saturate photosynthesis from 38 to 80 micromolar, while it did not affect the maximum photosynthetic rate. External CA activity was also removed from the cell-wall-less mutant (CW-15) by washing. This had no effect on the photosynthetic kinetics of the algae while the addition of acetazolamide to washed cells (CW-15) increased the K½DIC from 38 to 80 micromolar. Acetazolamide also caused a buildup of the inorganic carbon pool upon NaHCO3 addition, indicating that this compound partially inhibited internal CA activity. The effects of acetazolamide on the photosynthetic kinetics of C. reinhardii are likely due to the inhibition of internal rather than a consequence of the inhibition of external CA. Further analysis of the isotopic disequilibrium experiments at saturating concentration of DIC provided evidence consistent with active CO2 transport by C. reinhardii. The observation that C. reinhardii has the ability to take up both CO2 and bicarbonate throws into question the role of external CA in the accumulation of DIC in this alga.  相似文献   

18.
Air-grown cells of Porphyridium purpurem contain appreciable carbonic-anhydrase activity, comparable to that in air-grown Chlamydomonas reinhardtii, but activity is repressed in CO2-grown cells. Assay of carbonic-anhydrase activity in intact cells and cell extracts shows all activity to be intracellular in Porphyridium. Measurement of inorganic-carbon-dependent photosynthetic O2 evolution shows that sodium ions increase the affinity of Porphyridium cells for HCO 3 - . Acetazolamide and ethoxyzolamide were potent inhibitors of carbonic anhydrase in cell extracts but at pH 5.0 both acetazolamide and ethoxyzolamide had little effect upon the concentration of inorganic carbon required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]). At pH 8.0, where HCO 3 - is the predominant species of inorganic carbon, the K0.5 (CO2) was increased from 50 M to 950 M in the presence of ethoxyzolamide. It is concluded that in air-grown cells of Porphyridium. HCO 3 - is transported across the plasmalemma and intracellular carbonic anhydrase increases the steady-state flux of CO2 from inside the plasmalemma to ribulose-1,5-bisphosphate carboxylase-oxygenase by catalysing the interconversion of HCO 3 - and CO2 within the cell.Abbreviations AZ acetazolamide - EZ ethoxyzolamide - K0.5[CO2] half-maximal rate of photosynthetic O2 evolution  相似文献   

19.
Synechococcus leopoliensis was grown in HCO3-limited chemostats. Growth at 50% the maximum rate occurred when the inorganic carbon concentration was 10 to 15 micromolar (or 5.6 to 8.4 nanomolar CO2). The O2 to CO2 ratios during growth were as high as 192,000 to 1. At growth rates below 80% the maximum rate, essentially all the supplied inorganic carbon was converted to organic carbon, and the cells were carbon limited. Carbon-limited cells used HCO3 rather than CO2 for growth. They also exhibited a very high photosynthetic affinity for inorganic carbon in short-term experiments. Cells growing at greater than 80% maximum growth rate, in the presence of high dissolved inorganic carbon, were termed carbon sufficient. These cells had photosynthetic affinities that were about 1000-fold lower than HCO3-limited cells and also had a reduced capacity for HCO3 transport. HCO3-limited cells are reminiscent of the air-grown cells of batch culture studies while the carbon sufficient cells are reminiscent of high-CO2 grown cells. However, the low affinity cells of the present study were growing at CO2 concentrations less than air saturation. This suggests that supranormal levels of CO2 not required to induce the physiological changes usually ascribed to high CO2 cells.  相似文献   

20.
贵州喀斯特森林三种植物对不同坡位环境的光合生理响应   总被引:1,自引:0,他引:1  
该研究以贵州普定喀斯特森林中、下坡位生长的构树( Broussonetia papyrifera)、朴树( Celtis sinensis)和光滑悬钩子( Rubus tsangii)为材料,通过对碳酸酐酶( CA)活性、光合作用日变化、净光合速率对CO2与光的响应曲线、叶绿素荧光特性以及稳定碳同位素组成等指标的测定,进而对比分析三种植物不同的光合生理响应特性。结果表明:构树光合作用过程的无机碳源既可来自大气中的CO2,也可以在气孔部分闭合的情况下利用细胞内的HCO3-,下坡位的构树较高的CA活性使其利用HCO3-的效率会更高,并能在较低光强下具有较高的光能利用效率。这可能与下坡位的构树具有较高的CA活性有关,对下坡位具有更好的适应性。朴树光合无机碳的同化能力最低,且光合无机碳源较单一,主要利用大气CO2,其较慢的生长速率使其对无机碳的需求最低,且能保持较稳定的无机碳同化速率。相对来说,中坡位的朴树具有相对较高的净光合速率和光能利用效率,对中坡位表现出较好的适应性。光滑悬钩子主要利用大气中的CO2进行光合作用。中坡位的光滑悬钩子具有较强的光能利用效率,并表现出较高的净光合速率,光滑悬钩子对中坡位同样表现出较好的适应性。该研究结果为喀斯特生态脆弱区植被重建过程中树种的选择及合理配置提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号