首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The pyrimidine nucleoside, 1-beta-D-ribofuranosyl pyridine-2-one-5-carboxamide, is an anti inflammatory agent used in the treatment of adjuvant-induced arthritis. It is the 2-one isomer of 1-beta-D-ribofuranosyl pyridine-4-one 5-carboxamide, an unusual nucleoside isolated from the urine of patients with chronic myelogenic leukemia and an important cancer marker. Crystals of 1-beta-D-ribofuranosyl pyridine-2-one-5-carboxamide are monoclinic, space group C2, with the cell dimensions a = 31.7920(13), b = 4.6872 (3), c = 16.1838(11), beta = 93.071(3) degrees , V = 2408.2(2) A(3), D(calc) = 1.496 mg/m(3) and Z = 8 (two molecules in the asymmetric unit). The structure was obtained by the application of direct methods to diffractometric data and refined to a final R value of 0.050 for 1669 reflections with I >or= 3sigma. The nucleoside exhibits an anti conformation across the glycosidic bond (chi(CN) = -15.5 degrees , -18.9 degrees ), a C3 '-endo C2 '-exo [(3)(2)T] ribose pucker and g(+) across the C(4 ')-C(5 ') exocyclic bond. The amino group of the carboxamide group is distal from the 2-one and lacks the intramolecular hydrogen bonding found in the related 2-one molecule. Nuclear magnetic resonance studies shows also an anti conformation across the glycosidic bond but the solution conformation of the furanose ring is not the same as that found in the solid state.  相似文献   

3.
Structural studies using 500 MHz 1H NMR spectroscopy on Bam H1 recognition site d(GGATCC)2 in solution at 19 degrees is reported. The resonances from the sugar ring and base protons have been assigned from the 2D-COSY and NOESY spectra. Analyses of the NOESY cross-peaks between the base protons H8/H6 and sugar protons H2'/H2", H3' reveal that the nucleotide units G2, A3 and C6 adopt (C3'-endo, chi = 200 degrees-220 degrees) conformation while G1, T4 and C5 exhibit (C2'-endo, chi = 240 degrees-260 degrees) conformation. NMR data clearly suggest that the two strands of d(GGATCC)2 are conformationally equivalent and there is a structural two-fold between the two A-T pairs. The above information and the NOESY data are used to generate a structural model of d(GGATCC)2. The important features are: (i) G1-G2 stack, the site of cleavage, shows an alternation in sugar pucker i.e. C2'-endo, C3'-endo as in a B-A junction, (ii) G2-A3 stack adopts a mini A-DNA, both the sugars being C3'-endo, (iii) A3-T4 stack, the site of two-fold, displays an A-B junction with alternation in sugar pucker as C3'-endo, C2'-endo, (iv) T4-C5 stack adopts a mini B-DNA both the sugars being C2'-endo and (v) C5-C6 stack exhibits a B-A junction with C2'-endo, C3'-endo sugar puckers. Thus, our studies demonstrate that conformational microheterogeneity with a structural two fold, is present in the Bam H1 recognition site.  相似文献   

4.
The structure of the hydrate of 2'-deoxy-2'-fluoroinosine has been determined by single-crystal x-ray diffraction. The nucleoside crystallizes in space group P2(1)2(1)2(1) with unit cell dimensions, a = 33.291, b = 10. 871, c = 6.897A. There are two nucleosides and two water molecules in the asymmetric unit. The structure was solved by direct methods and refined to a residual R = 0.095. The two independent nucleosides in the asymmetric unit show different conformations about the glycosidic bond, while other structural details are similar. The base orientation to the sugar is syn in molecule A, whereas anti in molecule B. The exocyclic C(4')-C(5') bond conformation defined with respect to C(3')-C(4')-C(5')-O(5') is gauche+ in both molecules A and B. The sugar ring pucker defined by the pseudorotation phase angle P is a twisted conformation in both, C(3')-endo-C(4')-exo with P = 29 degrees in molecule A and C(4')-exo-C(3')-endo with P = 41 degrees in molecule B. It is shown by comparison with x-ray results of other 2'-fluoronucleosides and unmodified nucleosides including inosines that, in addition to a strong preference of the C(3')-endo type pucker, twisted conformations involving C(4')-exo puckering may be one of characteristic features of 2'-fluoronucleosides.  相似文献   

5.
The conformation of a representative molecule of a new, potent class of antiviral-active modified nucleosides is determined. A bicyclic nucleoside, 3-(2'-deoxy-beta-D-ribofuranosyl)-6-(4-methylphenyl)-2,3-dihydrofuro[2,3-d]pyrimidin-2-one, shows C2'-endo and C3'-endo ribose conformations in solution (63:37, 37 degrees C; DMSO-d6), as determined by 1H NMR studies. The crystal structure of a 3',5'-di-O-acetyl-protected derivative (monoclinic, P21, a/b/c= 6.666(1)/12.225(1)/24.676(2) A, beta=90.24(1) degrees , Z=4) shows exclusively C2'-endo deoxyribose puckering. The base is found in the anti position both in solution and in crystalline form.  相似文献   

6.
The x-ray crystal structures of two new anti-HIV compounds, 9-(2,3-dideoxy-2-fluoro-beta-D-threo-pentofuranosyl)adenine (2'-F-dd-araA) and 9-(2,3-dideoxy-2-fluoro-beta-D-threo- pentofuranosyl)hypoxanthine (2'-F-dd-aral), have been determined at two temperatures. Both crystals are in the space group P2(1)2(1)2(1), and their structures were solved by direct methods. Least-squares refinement produced final R-factors of 0.027 for the 2'-F-dd-araA structure and of 0.044 for the 2'-F-dd-aral structure, respectively. The latter structure contains a two-fold disordered conformation of the sugar moiety. All three conformers (one for 2'-F-dd-araA and two for 2'-F-dd-aral) adopt an anti chi CN glycosyl torsion angle. The sugar in the 2'-F-dd-araA structure has a C2'-endo pucker conformation, whereas the sugar in the 2'-F-dd-aral structure has a mixture of C2'-endo and C3'-endo pucker conformations. When the sugar adopts the C2'-endo conformation, the torsion angle about the C4'-C5' bond is in a transgauche+ conformation. In contrast, when the sugar adopts the C3'-endo conformation, the torsion angle about the C4'-C5' bond is in a gauche(+)-gauche- conformation. The C2'-F bond distance is 1.406(3) A, similar to that found in other aliphatic C-F bonds. The results suggest that the 2'-fluoro-2',3'-dideoxyarabinosyl nucleosides do not have a strong preference for either C2'-endo or C3'-endo sugar pucker.  相似文献   

7.
The crystal structures of two nucleosides, 5-carbamoylmethyluridine (1) and 5-carboxymethyluridine (2), were determined from three-dimensional x-ray diffraction data, and refined to R = 0.036 and R = 0.047, respectively. Compound 1 is in the C3'-endo conformation with chi +5.2 degrees (anti), psiinfinity = +63.4 degrees and psialpha = +180.0 degrees (tt); 2 is in the C2'endo conformation with chi +49.4 degrees (anti), psiinfinity -60.5 degrees and psialpha +60.0 degrees (gg). For each derivative, the plane of the side chain substituent is skewed with respect to the plane of the nucleobase; for 1, the carboxamide group is on the same side of the uracil plane vis a vis the ribose ring; for 2, the carboxyl group is on the opposite side of this plane. No base pairing is observed for either structure. Incorporation of structure 1 into a 3'-stacked tRNA anticodon appears to place 08 within hydrogen bonding distance of the 02' hydroxyl of ribose 33, which may limit the ability of such a molecule of tRNA to "wobble".  相似文献   

8.
F E Evans  R A Levine 《Biochemistry》1988,27(8):3046-3055
The conformation and dynamics of the dinucleotide d-CpG modified at the C(8) position of the guanine ring by the carcinogen 2-(acetylamino)fluorene has been investigated by high-field 1H NMR spectroscopy. A two-state analysis of chemical shift data has enabled estimation of the extent of intramolecular stacking in aqueous solution as a function of temperature. The stacking, which is mostly fluorene-cytosine, is virtually complete in the low-temperature range. The 500-MHz 1H NMR spectrum consists of two subspectra near ambient temperatures due to a 14.3 +/- 0.3 kcal/mol barrier to internal rotation about the amide bond in the stacked form. A large barrier to internal rotation about the guanyl-nitrogen bond at C(8) has also been ascertained, but separate NMR subspectra were not detected due to the predominance of one of the torsional diastereomers (alpha' = 90 degrees) in the fully stacked state. Problems of self-association and chemical exchange were identified and overcome to enable analysis of the sugar-phosphate backbone conformation utilizing coupling constants. For the exocyclic C(4')-C(5') bond of the deoxyguanosine moiety, there is a high gauche+ (gamma = 60 degrees) conformer population, which is uncommon for a purine nucleotide with a syn orientation about the glycosyl bond. The gauche- conformation (gamma = 300 degrees), which is normally present in syn purine nucleotides in solution, was not detected. The exocyclic C(5')-O(5') torsion of the deoxy-guanosine moiety remains near the classical energy minimum (beta = 180 degrees) in the major stacked conformations. The sugar ring of the deoxycytidine moiety is predominantly in the C2'-endo conformation, while the deoxyguanosine ring is a mixture of conformations, one of which appears to be unusually puckered. The results support intercalation models of modified DNA and suggest a looped-out structure, with the modified guanine being the first base in the loop. Such structures could explain the relatively rapid rate of repair and the frame-shift mutations of this type of adduct.  相似文献   

9.
Crystals of 5‐fluorouridine (5FUrd) have unit cell dimensions a = 7.716(1), b = 5.861(2), c = 13.041(1)Å, α = γ = 90°, β = 96.70° (1), space group P21, Z = 2, ρobs = 1.56 gm/c.c and ρcalc = 1574 gm/c.c The crystal structure was determined with diffractometric data and refined to a final reliability index of 0.042 for the observed 2205 reflections (I ≥ 3σ). The nucleoside has the anti conformation [χ = 53.1(4)°] with the furanose ring in the favorite C2′–endo conformation. The conformation across the sugar exocyclic bond is g+, with values of 49.1(4) and ? 69.3(4)° for Φθc and Φ respectively. The pseudorotational amplitude τm is 34.5 (2) with a phase angle of 171.6(4)°. The crystal structure is stabilized by a network of N–H…O and O–H…O involving the N3 of the uracil base and the sugar O3′ and O2′ as donors and the O2 and O4 of the uracil base and O3′ oxygen as acceptors respectively. Fluorine is neither involved in the hydrogen bonding nor in the stacking interactions. Our studies of several 5‐fluorinated nucleosides show the following preferred conformational features: 1) the most favored anti conformation for the nucleoside [χ varies from ? 20 to + 60°] 2) an inverse correlation between the glycosyl bond distance and the χ angle 3) a wide variation of conformations of the sugar ranging froni C2′–endo through C3′–endo to C4′–exo 4) the preferred g+ across the exocyclic C4′–C5′ bond and 5) no role for the fluorine atom in the hydrogen bonding or base stacking interactions.  相似文献   

10.
X-ray, NMR and molecular mechanics studies on pentostatin (C11H16N4O4), a potent inhibitor of the enzyme adenosine deaminase, have been carried out to study the structure and conformation. The crystals belong to the monoclinic space group P21 with the cell dimensions of a = 4.960(1), b = 10.746(3), c = 11.279(4)A, beta = 101.18(2) degrees and Z = 2. The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.047 for 997 reflections. The trihydrodiazepine ring is nonplanar and adopts a distorted sofa conformation with C(7) deviated from the mean plane by 0.66A. The deoxyribose ring adopts a C3'-endo conformation, different from coformycin where the sugar has a C2'-endo conformation. The observed glycosidic torsion angle (chi = -119.5 degrees) is in the anti range. The conformation about the C(4')-C(5') bond is gauche+. The conformation of the molecule is compared with that of coformycin and 2-azacoformycin. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. The conformation of deoxyribose in solution is approximately 70% S and 30% N. Molecular mechanics studies were performed to obtain the energy minimized conformation, which is compared with X-ray and NMR results.  相似文献   

11.
O4-Methylthymidine (O4medT) is a promutagen. To correlate its biological properties to changes in the electronic, geometric, and conformational properties of the pyrimidine base resulting from the keto to enol shift arising from methylation, an X-ray study of O4medT was undertaken. The crystal data are a = 4.950 (2) A, b = 12.648 (1) A, c = 19.305 (2) A, space group P2(1)2(1)2(1), Z = 4, and R = 0.042. The D-deoxyribofuranosyl ring is puckered in the uncommon 1T2 twist conformation with the phase angle of pseudorotation P = 133.8 (5)degrees. The amplitude of puckering tau m = 31.4 (3)degrees shows that the ring is considerably flattened. The base is in the anti conformation [chi CN = 40.6 (4)degrees], and the exocyclic C(4')-C(5') bond (psi) is gauche+ [46.2 (5)degrees]. Methylation produces cytosine-like conjugation for the thymine base. The methoxy group takes the syn-periplanar conformation. Two types of mispairings with guanine are possible, and both require the anti conformation for the O(4) methoxy group. Semiempirical energy calculations have been carried out and reveal that the anti conformation can be energetically assumed in the double helix by widening the exocyclic angles C(5)-C(4)-O(4) and C(4)-C(5)-C(7) and the angle C(4)-O(4)-C(8) at the methoxy group. Such coordinated expansion relieves unfavorable interactions between the C(7) and C(8) methyl groups.  相似文献   

12.
The structure of 3'-methylamino-2',3'-dideoxyribosylthymine [ddT(3'NHMe)] was determined by X-ray analysis. The space group is P2(1)2(1)2(1). Cell dimensions are: a 5.132(1), b 13.718(1), c 16.947(2) A, V 1193.2 A3, Z 4. The structure was solved by directed methods and refined by the full-matrix least square method to R 4.8%. The molecule of ddT(3'NHMe) has anti-conformation with respect to the glycosidic bond (chi (O4'-C1'-N1-C2) = -106.7 degrees), C3'-endo-C4'-exo puckering of the sugar moiety (P -28.8 degrees, psi m -31.5 degrees) and gauche-gauche conformation about exocyclic C4'-C5' bond (psi(C3'-C4'-C5'-O5') 45.8 degrees). The structure of ddT(3'NHMe) was compared with those of 3'-amino-3'-deoxythymidine, 3'-azido-3'-deoxythymidine and natural thymidine.  相似文献   

13.
Crystal structures of (Z)-5-(2-bromovinyl)-2'-deoxyuridine, 3',5'-di-O-acetyl-(E)-5-(2-bromovinyl)-2'-deoxyuridine and 3',5'-di-O-p-chlorobenzoyl-5-(2-dibromovinyl)-2'-deoxyuridine are compared with each other and with that of the most potent antiviral agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (E-BVDU) reported earlier. A comparison of the conformation of 3',5'-di-O-acetyl-pyrimidine nucleoside structures in which intermolecular hydrogen bond network formation is minimized, with those of their parent compounds has shown that the greatest change in rotation about the glycosyl bond and in the sugar ring pucker is exhibited by E-BVDU. Upon acylation this molecule changes from C2'-endo/C3'-exo conformation to C3'-endo/C4'-exo conformation. The relevance of these structures upon the biological activity of the nucleosides and in particular to their ability to be a substrate for thymidine kinase is discussed.  相似文献   

14.
The pyrimidine antimetabolite Ftorafur [FT; 5-fluoro-1-(tetrahydro-2-furyl)uracil] has shown significant antitumor activity in several adenocarcinomas with a spectrum of activity similar to, but less toxic than, 5-fluorouracil (5-FU). It is considered as a prodrug that acts as a depot form of 5-FU, and hence the two drugs exhibit a similar spectrum of chemotherapeutic activity. Ftorafur is metabolized in animals and humans when hydroxyl groups are introduced into the tetrahydrofuran moiety. These metabolites are also thought to be as active as ftorafur but less toxic than 5-FU. Hydroxyl derivatives: 2'-hydroxyftorafur (III), 3'-hydroxyftorafur (IV) and 2',3'-dihydroxyftorafur (II) were synthesized and X-ray and NMR studies of these hydroxyl derivatives were undertaken in our laboratories to study the structural and conformational features of Ftorafur and its metabolites in the solid and solution states. X-ray crystallographic investigations were carried out with data collected on a CAD-4 diffractometer. The structures were solved and refined using the SDP crystallographic package of Enraf-Nonius on PDP 11/34 and Microvax computers. All of the compounds studied had the base in the anti conformation. The glycosidic torsion angles varied from -20 to 60 degrees. There is an inverse correlation between the glycosyl bond distances and the chi angle. Molecules with a lower chi angle have a larger bond distance and vice versa. The sugar rings show a wide variation of conformations ranging from C2'-endo through C3'-endo to C4'-exo. The crystal structures are stabilized by hydrogen bonds involving the base nitrogen atom N3 and the hydroxyl oxygen atoms of the sugar rings as donors and the keto oxygens O2 and O4 of the base and the hydroxyl oxygen atoms O2' and O3' as acceptors. The NMR studies were carried out on Brüker 400 and 600 MHz instruments. Simulated proton spectra were obtained through Laocoon, and pseudorotational parameters were solved by Pseurot. Presence of syn or anti forms was demonstrated with the use of NOE experiments. The glycosyl conformations in solution vary more widely than in the solid state. The conformations of the sugar molecules are in agreement with the values obtained in the solid state. The studies of the structure and conformation in the solid and solution states give a model for the Ftorafur molecule that could be used in structure, function and biological activity correlation studies.  相似文献   

15.
The crystal structure of 5-nitrouridine was determined by X-ray analysis. The pyrimidine ring is slightly non-planar, showing a shallow boat conformation. The nitro group has no influence on the C4 - O4 bond length as compared to uridine. The ribose shows the C3'-endo conformation and the base is in the anti orientation to the sugar with a torsion angle of 25.6 degrees. This conformation is stabilized by a hydrogen bond from the base to the ribosyl moiety (H6 ... 05'). Stacking interactions between neighboring bases are almost negligible in the crystal. A water molecule is involved in a bifurcated donating hydrogen bond to 04 and to 052 of the nitro group of the one base and an accepting bond from the H3 of the other base. Two more hydrogen bonds are formed between the water molecule and the ribose. The structural aspects of 5-nitrouridine are discussed with respect to the special stacking features found for 5-nitro-1-(beta-D-ribosyluronic acid)-uracil monohydrate in the crystal (1).  相似文献   

16.
Crystals of 8-(alpha-hydroxyisopropyl)-adenosine dihydrate, C13H19N5O5.2H2O, belong to the monoclinic space group P21. Cell dimensions are a = 8.259 (1), b = 11.117 (2), c = 9.663 (1) A, beta = 109.65 (2) degrees. Intensity data were collected on a four-circle diffractometer and the structure was solved by direct methods. Block diagonal least-squares refinement led to R = 0.031 for 1467 reflections. The glycosyl torsion angle chiCN is 241.4 degrees, corresponding to a syn conformation. The conformation of the exocyclic C(4')-C(5') bond is gauche-gauche and the sugar pucker is C(2') endo. It is considered that the bulky, tetrahedral, neutral 8-substituent, with an effective van der Waals radius of 3.5--4.0 A, provides an adenosine analogue which should exhibit the syn conformation about the glycosidic bond in solution as well as in solid state, irrespective of the nature of the sugar pucker. It should therefore be suitable for studies of interactions with enzyme systems requiring the anti conformation of the nucleoside or nucleotide.  相似文献   

17.
Several new N1-substituted uncommon purine nucleosides, including doridosine (1-methyl-isoguanosine; m-iG), 1-allyl-isoguanosine (a-iG) and 1-allyl-xanthosine (a-X), have been synthesized and tested as agonists for the adenosine receptors. Some have smooth muscle relaxant or negative chronotropic activities. The X-ray crystal structure of these compounds has been determined at atomic resolution in order to understand the structure-activity relationship. The structures were solved by direct methods and refined by full-matrix least-squares refinement procedure. The crystallographic parameters are: a-iG, space group P2(1), a = 10.573 (1) A, b = 21.955 (2) A, c = 14.360 (1) A, beta = 110.65 (1) degree, no. of 3 sigma Fo's = 4585, R = 0.047; a-X, space group P2(1)2(1)2(1), a = 16.015 (2) A, b = 16.239 (1) A, (1) A, c = 5.3723 (5) A, no. of 3 sigma Fo's = 1169, R = 0.031. In the a-iG crystal, there are 4 independent molecules (with different conformation) per asymmetric unit. While all 4 molecules adopt anti chi CN glycosyl torsion angle, their riboses have 3 distinct puckers (C2'-exo, C2'-endo and C1'-exo). In contrast, the a-X structure adopts a syn chi CN glycosyl torsion angle, which is stabilized by an intramolecular hydrogen bond between the N3 of purine base and the O5' of the ribose (in C2'-endo pucker). Both purine bases (a-iG and a-X) are mainly in the keto tautomer form. For the isoguanine base, the averaged N1-C2 bond distance (1.42 A) is significantly longer than that (1.375 A) of the guanine base. For the xanthine base, N3 nitrogen has an imino proton attached which is unambiguously located in the electron density map. The surprising flexibility in the ribose ring of these N1-substituted uncommon purine nucleosides suggests that the ribose moiety may not participate in the binding of nucleoside to the adenosine receptors.  相似文献   

18.
G I Birnbaum  P Lassota  D Shugar 《Biochemistry》1984,23(21):5048-5053
The three-dimensional structure of 8-chloroguanosine dihydrate was determined by X-ray crystallography. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), and the cell dimensions are a = 4.871 (1) A, b = 12.040 (1) A, and c = 24.506 (1) A. The structure was determined by direct methods, and least-squares refinement, which included all hydrogen atoms, converged at R = 0.031 for 1599 observed reflections. The conformation about the glycosidic bond is syn with chi CN = -131.1 degrees. The ribose ring has a C(2')-endo/C-(1')-exo (2T1) pucker, and the gauche+ conformation of the -CH2OH side chain is stabilized by an intramolecular O-(5')-H...N(3) hydrogen bond. Conformational analysis by means of 1H NMR spectroscopy showed that, in dimethyl sulfoxide, the sugar ring exhibits a marked preference for the C(2')-endo conformation (approximately 70%) and a conformation about the glycosidic bond predominantly syn (approximately 90%), hence similar to that in the solid state. However, the conformation of the exocyclic 5'-CH2OH group exhibits only a moderate preference for the gauche+ rotamer (approximately 40%), presumably due to the inability to form the intramolecular hydrogen bond to N(3) in a polar medium. The conformational features are examined in relation to the behavior of 8-substituted purine nucleosides in several enzymatic systems, with due account taken of the steric bulk and electronegativities of the 8-substituents.  相似文献   

19.
Irradiation of dTpdT with 300 kJ/m2 of 254 nm produces numerous photo-products, one of which labeled dT6pd4T[1] was purified by HPLC. dT6pd4T has a UV spectrum (H20, pH 7) with lambda max = 326 nm and lambda min = 265 nm, and a P-31 NMR resonance at -3.46 ppm (normal dTpdT occurs at -4.01 ppm; TMP, 30 degrees C). 2-D COSY NMR spectra facilitated proton resonance assignments and 2-D NOESY spectra aided analysis of spatial orientation. Carbon-13 and proton-coupled P-31 NMR spectra of dT6pd4T were also obtained. These analyses indicate: C5=C6 of dT6p- is saturated and the -pd4T base is more aromatic; the dT6p- base possesses a configuration of 5R, 6S; dT6p- and -pd4T have anti-type glycosidic conformations; furanose conformation of dT6p- is mainly C3'-endo and that of -pd4T exists in a C3'-endo in equilibrium C3'-exo; exocyclic bonds gamma (C5'-C4'), beta (05'-C5') and epsilon (C3'-03') are non-classical rotamers; dihedral angle about epsilon (C3'-03') is smaller relative to dTpdT.  相似文献   

20.
A H Wang  G Ughetto  G J Quigley  A Rich 《Biochemistry》1987,26(4):1152-1163
The crystal structure of a daunomycin-d(CGTACG) complex has been solved by X-ray diffraction analysis and refined to a final R factor of 0.175 at 1.2-A resolution. The crystals are in a tetragonal crystal system with space group P4(1)2(1)2 and cell dimensions of a = b = 27.86 A and c = 52.72 A. The self-complementary DNA forms a six base pair right-handed double helix with two daunomycin molecules intercalated in the d(CpG) sequences at either end of the helix. Daunomycin in the complex has a conformation different from that of daunomycin alone. The daunomycin aglycon chromophore is oriented at right angles to the long dimension of the DNA base pairs, and the cyclohexene ring A rests in the minor groove of the double helix. Substituents on this ring have hydrogen-bonding interactions to the base pairs above and below the intercalation site. O9 hydroxyl group of the daunomycin forms two hydrogen bonds with N3 and N2 of an adjacent guanine base. Two bridging water molecules between the drug and DNA stabilize the complex in the minor groove. In the major groove, a hydrated sodium ion is coordinated to N7 of the terminal guanine and the O4 and O5 of daunomycin with a distorted octahedral geometry. The amino sugar lies in the minor groove without bonding to the DNA. The DNA double helix is distorted with an asymmetrical rearrangement of the backbone conformation surrounding the intercalator drug. The sugar puckers are C1,C2'-endo, G2,C1'-endo, C11,C1'-endo, and G12,C3'-exo. Only the C1 residue has a normal anti-glycosyl torsion angle (chi = -154 degrees), while the other three residues are all in the high anti range (average chi = -86 degrees). This structure allows us to identify three principal functional components of anthracycline antibiotics: the intercalator (rings B-D), the anchoring functions associated with ring A, and the amino sugar. The structure-function relationships of daunomycin binding to DNA as well as other related anticancer drugs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号