首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
Data comparing the physiological response to hyperosmotic stress in individual copepods (Tigriopus californicus) from natural populations and laboratory hybrids are presented. While individuals from two genetically differentiated natural populations and F1 interpopulation hybrids showed only minor differences in patterns of free amino acid (FAA) accumulation during hyperosmotic stress, patterns of FAA synthesis were highly variable among the F2 hybrids. Isofemale lines initiated from later hybrid generations (F7-F10) exhibited substantial inter-line variance in FAA accumulation. This increased variance in physiological response appears unrelated to allozyme polymorphisms at two loci encoding FAA-metabolizing enzymes and appears to result from other, unidentified polymorphisms in the proline synthetic pathway.  相似文献   

4.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

5.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24 h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24 h, diminishing to FW values. Nerve FAA increase 187% within 24 h, and remain elevated. Hemolymph FAA decrease (-75%) after 24 h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (-70%) decreases. Total FAA pools contribute 10-20% to intracellular (22-70 mmol/kg) and 0.5-2.4% to hemolymph (3-7 mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

6.
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute ≈85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute ≈22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.  相似文献   

7.
K. Raschke  P. Dittrich 《Planta》1977,135(1):69-75
Following small hypo-osmotic shocks, ion concentrations (Na+, K+, Cl-) in Platymonas subcordiformis decreased; this was due mainly to an increase of cell volume. With larger hypo-osmotic stresses, the decrease of ion concentration continued and, additionally, extrusion of mannitol was observed. The ion and mannitol concentrations were not regained after 240 min. In contrast, following hyperosmotic shocks, the ion concentrations increased transitorily during the first 20–40 min. The same was true for K+ following small hyperosmotic stresses and for Na+ and — partially — Cl- with larger shocks. Large hyperosmotic stresses caused permanent accumulation of mannitol, which levelled off after 60–80 min. Thus the transient increase of ions bridged the concentration gap until mannitol was accumulated to a high enough concentration to account for the osmotic adaptation of Platymonas, together with a basal level of the ions K+, Na+, Cl-.Abbreviations PS photosynthesis - Resp respiration  相似文献   

8.
The content of betaine and alanine in gills of the ribbed mussel Geukensia demissa increases rapidly following transfer of the tissues from 250 to 1000 mOsm seawater (SW). Increases in alanine, proline and glycine account for most of the increase in the amino acid pool. The betaine content increases from 45 to 150 μmol/g dry weight within 12 h. Transfer of isolated gills from 250 to 1000 mOsm SW results in a temporary cessation of all ciliary activity. Within 20–40 min following transfer, ciliary activity has recovered. Recovery of ciliary activity precedes recovery of tissue hydration. The uric acid content of gills is unchanged by exposure to hyperosmotic media, suggesting that uric acid is not a store of nitrogen for alanine synthesis from pyruvate. In other organisms, the accumulation of betaine in response to hyperosmotic stress is a slow (days to weeks) process that probably involves changes in gene expression. The rapid, large increases in betaine reported here suggest that gene expression is not a factor in volume recovery by euryhaline bivalve tissues exposed to acute hyperosmotic stress.  相似文献   

9.
In order to regulate cell volume during hyperosmotic stress, the intertidal copepod Tigriopus californicus, like other aquatic crustaceans, rapidly accumulates high levels of intracellular alanine, proline, and glycine. Glutamate-pyruvate transaminase (GPT; EC 2.6.1.2), which catalyzes the final step of alanine synthesis, is genetically polymorphic in T. californicus populations at Santa Cruz, California. Spectrophotometric studies of homogenates derived from a homozygous isofemale line of each of the two common GPT alleles indicated that the GPTF allozyme has a significantly higher specific activity than the GPTS allozyme. Under conditions of hyperosmotic stress, individual adult copepods of GPTF and GPTF/S genotypes accumulated alanine, but not glycine or proline, more rapidly than GPTS homozygotes. When young larvae were subjected to the same hyperosmotic conditions, GPTS larvae suffered a significantly higher mortality than GPTF or GPTF/S larvae. These results suggest that the biochemical differences among GPT allozymes result in specific physiological variation among GPT genotypes and that this physiological variation is manifested in differential genotypic survivorships under some naturally occurring environmental conditions.This work was supported in part by a grant from the Lerner Fund for Marine Research of the American Museum of Natural History, an NIH Training Grant in Integrative Biology, and NIH Grants GM 28016 and GM 10452.  相似文献   

10.
11.
12.
Actinomycetes were isolated from a number of saline and saline-sodic California soils. From these isolates, two species of Streptomyces (S. griseus and S. californicus) were selected to assess their physiological response to salinity. NaCl was more inhibitory to growth rates and specific growth yields than were equivalent concentrations of KCl. Intracellular concentrations of the free amino acid pool increased in response to salt stress. Whereas the neutral free amino acids proline, glutamine, and alanine accumulated as salinity increased, concentrations of the acidic free amino acids glutamate and aspartate were reduced. Accumulation of free amino acids by streptomycetes under salt stress suggests a response typical of procaryotes, although the specific amino acids involved differ from those associated with other gram-positive bacteria. Above a salinity threshold of about 0.75 M (−3.8 MPa), there was little further intracellular accumulation of free amino acids, whereas accumulation of K+ salts sharply increased.  相似文献   

13.
This study investigated that the importing of compatible solute proline could enhance the growth of the yeast Torulopsis glabrata under hyperosmotic stress. Osmolarity progressively increased from 860 to 2,603 mOsmol/kg by accumulation of sodium pyruvate in the culture broth, leading to a significant decrease in cell growth. When 1.0 g/L of proline as a compatible solute was added to the culture medium, it was imported and enhanced cell growth by 59.0% at 2,603 mOsmol/kg. By addition of proline during pyruvate production, the concentration, productivity, and yield of pyruvate increased 22.1, 38.4, and 14.3%, respectively. These results suggested that T. glabrata can import proline as an osmoprotectant against high osmotic stress, thus enhance pyruvate productivity. The improvement of yeast growth and viability under hyperosmotic stress by the addition of proline provided an alternative approach to enhance the organic acids production by yeast.  相似文献   

14.
Changes in free amino acids (FAA) in the hemolymph of the giant freshwater prawn, Macrobrachium rosenbergii, were examined in individuals exposed to varying salinities for up to 1 week. In freshwater and under conditions of low salinity, total FAA concentrations were maintained between approximately 0.85 and 1 mM and did not exhibit changes in response to salinity exposure. Under high salinities, total FAA concentrations increased dramatically, reaching up to 2.1 mM depending on treatment. Examination of individual amino acid concentrations revealed that these increases were based on specific changes in glycine, arginine, alanine, proline and lysine. Among these, alanine showed the greatest increases, resulting in levels six-fold higher under high salinity than in freshwater and under low salinity. The other amino acid species showed increases of 2.5-fold compared to original values. These five FAAs in freshwater and under low salinity together occupied approximately 45% of total FAA contents and under high salinity comprised more than 70% of total FAA contents. These results suggest that specific hemolymph FAAs are involved in mediating response to salinity exposure in freshwater prawns.  相似文献   

15.
The present study assesses the effects of osmotic stress on phosphoenolpyruvate carboxykinase (PEPCK), fructose 1,6-bisphosphatase (FBPase) and glucose 6-phosphatase (G6Pase) activities and (14)C-total lipid synthesis from (14)C-glycine in the anterior and posterior gills, jaw muscle, and hepatopancreas of Neohelice granulata. In posterior gills, 24-h exposure to hyperosmotic stress increased PEPCK, FBPase and G6Pase activities. Increase in (14)C-lipid synthesis was associated to the decrease in PEPCK activity after 72-h exposure to hyperosmotic stress. Hypo-osmotic stress decreased PEPCK and G6Pase activities in posterior gills; however, (14)C-lipids increased after 72-h exposure to stress. In anterior gills, decreases in the G6Pase activity after 72-h of hyperosmotic stress and in (14)C-lipogenesis after 144-h were observed, while PEPCK activity increased after 144 h. Exposure to hypo-osmotic stress increased (14)C-lipid synthesis and PEPCK activity in anterior gills. Muscle G6Pase activity increased after 72-h exposure to hypo-osmotic stress; however, no significant change was observed in the lipogenesis. PEPCK decreased in muscle after 144-h exposure to hyperosmotic, coinciding with increased (14)C-lipid synthesis. In the hepatopancreas, a decrease in the (14)C-lipogenesis occurred after 24-h exposure to hyperosmotic stress, accompanied by increase in (14)C-lipid synthesis. Additionally, PEPCK activity returned to control levels. The hepatopancreatic lipogenesis from amino acids was not involved in the metabolic adjustment during hypo-osmotic stress. However, gluconeogenesis is one of the pathways involved in the adjustment of the intracellular concentration of nitrogenated compounds.  相似文献   

16.
Proline accumulation in osmotically stressed leaves of Lotus corniculatus was stimulated by increasing light intensity (photon fluence density, PFD). Treatment with propanil limited proline accumulation in response to light and osmotic stress, indicating a dependence of proline synthesis on photosynthetic NADPH. Drought stress induced proline accumulation in L. corniculatus both in nitrate-fed plant (NFP) and ammonium-fed plants (AFP), although higher proline concentration was observed in AFP than in NFP after 24 h of drought stress. Changes in proline accumulation induced by drought stress in plants grown under different nitrogen regimes could not be explained by changes of either total protein or amino acids, consistent with specifically altered regulation of proline synthesis. Under control conditions, alanine, aspartate and glutamate were the predominant amino acids in NFP; conversely, in AFP, arginine and ornithine were the predominant amino acids. Only the NFP regime showed changes in the concentrations of specific amino acids under drought stress a decrease in alanine, aspartate and glutamate and increased gama-aminobutyric acid. In AFP and especially NFP, proline accumulation under osmotic stress was associated with increased ornithine amino transferase activity. An increase of both activity and protein of ferredoxin-dependent glutamate synthase was observed in osmotic-stressed NFP; inversely both decreased in drought-stressed AFP. PFD and nitrogen source are therefore shown to be regulators of proline accumulation in L. corniculatus osmotically stressed plants.  相似文献   

17.
Summary The osmotic changes in haemolymph and body tissues of the ectoparasitic salmon louse,Lepeophtheirus salmonis, have been studied upon transfer from sea water (SW) to dilute sea water (37% SW), and then to fresh water (FW). The parasite shows osmoconformity in SW but hyperosmotic regulation in 37% SW regardless of whether it is attached to the salmon host or free swimming in the water. The same conclusion is reached by haemolymph Cl measurements. In FW, the osmotic tolerance and response of attached and free swimming parasites differ: Attached animals maintain steady haemolymph osmolality and Cl concentration and survive for at least 1 week, while free swimming parasites quickly become diluted and start to die within 8 h.Acclimation to 37% SW is accompanied by changes in body tissue water content and in the content of ninhydrin positive substances and specific amino acids which suggest the presence of cell volume regulation. Glycine is the dominating free amino acid in the cephalothorax tissues but alanine, proline and taurine also occur in high amounts. Lysine is found to increase significantly during FW acclimation of attached parasites. A breakdown of cell volume regulation is suggested to limit the survival of attached salmon louse in fresh water.Abbreviations FW fresh water - NPS ninhydrin positive substances - SW sea water  相似文献   

18.
Porphyra umbilicalis, a marine red alga occurring in the intertidal zone of the cold North Sea, tolerates a wide range of osmotic conditions from 0.2 x to 6 x artificial seawater medium ASP12. In cells osmotically adapted for two weeks, photosynthesis and respiration are progressively inhibited in media more concentrated than 2 x. In both hypo- and hyperosmotic stress ranges, the most striking fine structural change is the development of vacuoles. In comparison to 1 x medium, where vacuoles are virtually lacking, the vacuolar part of the protoplasm increases 6-fold in 0.2 x and 10-fold in 3.5 x medium, respectively. However, at extreme hyperosmotic stress (6 x medium) the vacuolar part is extremely small. The largest cell volumes are found in 0.2 x and 3.5 x media, the smallest one in 6 x medium. In the osmotically regulated range (0.2–3.5 x medium), the regulated parameter is the volume of the protoplasm without the vacuolar system. It is suggested that at hyperosmotic stress the vacuoles may serve as osmotically active compartment, probably by accumulation of inorganic ions. The intracellular content of Floridean starch granules decreases with increasing osmotic pressure, possibly indicating the significance of soluble organic constituents as osmotically active solutes.Member of the Arbeitsgemeinschaft für Elektronenmikroskople un der Ticrärztlichen Hochschule Hannover  相似文献   

19.
Addition of osmoprotective compounds has a positive effect on growth and monoclonal antibody production in hyperosmotic hybridoma cell cultures. In order to better understand the processes involved in the osmoprotective response, uptake of the osmoprotective compounds glycine betaine, proline, sarcosine and glycine in mouse hybridoma cell line 6H11 during exposure to hyperosmotic stress was studied. Hyperosmotic stress (510 mOsmol/kg) was introduced through the addition of NaCl (100 mM) to the growth medium, and amino acid transport activity was measured immediately after transfer of the cells to the hyperosmotic medium. The osmoprotective capability of the four osmoprotectants tested was negatively affected if methylaminosobutyric acid (MeAiB), a specific substrate for amino acid transport system A, was simultaneously included in the hyperosmotic medium in equimolar amounts with one of the osmoprotective compounds. This was due to accumulation of MeAiB in the stressed cells, giving a significant reduction in the concentration of the osmoprotective compound inside the cells. Furthermore, addition of excess meAiB gave approx. 905 reduction in the initial rate of uptake of glycine betaine, while 40–50% reduction in the initial rate of uptake of proline, glycine and sarcosine. Similarly, addition of proline, glycine or sarcosine also gave a significant reduction in the initial rate of glycine betaine uptake. These results suggest that the four osmoprotective compounds share, at least in part, a common, MeAiB inhibitable carrier for transport into osmotically stressed hybridoma cells. This carrier is probably equal to amino acid transport system A.  相似文献   

20.
The salinity of estuarine environments can vary widely, exposing resident organisms to considerable osmotic stress. The green crab Carcinus maenas is well known for its ability to osmoregulate in response to such stress. Therefore, we tested the relationship between osmoregulation and hemolymph levels of methyl farnesoate (MF), a compound previously shown to rise in response to various types of environmental stresses. When crabs were transferred from 100% seawater to dilute (hypo-osmotic) seawater, hemolymph osmolality dropped rapidly, reaching an acclimation level 48 h after transfer. Hemolymph levels of MF also rose in these animals after a delay of 6 h, and reached a maximum level at 48 h. MF levels remained elevated as long as the crabs were maintained in dilute seawater, and quickly returned to basal levels when the animals were returned to full strength seawater. In most (but not all) animals, MF levels were elevated when hemolymph osmolality fell below the isosmotic point (approx. 800 mOsm/kg). These data suggest that MF may have a role in osmoregulation by this species. In addition, the elevation of MF by hypo-osmotic seawater suggests an experimental strategy for manipulating MF levels in crustaceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号