首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Five widely documented mechanisms of chloride transport across plasma membranes are: anion-coupled antiport; sodium and hydrogen-coupled symport; Cl- channels; and an electrochemical coupling process. No genetic evidence has yet been provided for primary active chloride transport despite numerous reports of cellular Cl(-)-stimulated ATPases co-existing, in the same tissue, with uphill chloride transport that could not be accounted for by the five common chloride transport processes. Cl(-)-stimulated ATPase activity is a common property of practically all biological cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase activity. Recent studies of Cl(-)-stimulated ATPase activity and active chloride transport in the same membrane system, including liposomes, suggest a mediation by the ATPase in net movement of chloride up its electrochemical gradient across plasma membranes. Further studies, especially from a molecular biological perspective, are required to confirm a direct transport role to plasma membrane-localized Cl(-)-stimulated ATPases.  相似文献   

2.
Cl(-)-ATPases: Novel primary active transporters in biology   总被引:2,自引:0,他引:2  
Five widely documented mechanisms of chloride transport across plasma membranes are anion-coupled antiport, sodium and hydrogen-coupled symport, Cl(-)channels, and an electrochemical coupling process. No genetic evidence has yet been provided for primary active chloride transport despite numerous reports of cellular Cl(-)-stimulated ATPases co-existing, in the same tissue, with uphill chloride transport that could not be accounted for by the five common chloride transport processes. Cl(-)-stimulated ATPase activity is a common property of practically all biological cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase activity. Recent studies of Cl(-)-stimulated ATPase activity and active chloride transport in the same membrane system, including liposomes, suggest a medication by the ATPase in net movement of chloride up its electrochemical gradient across plasma membranes. Further studies, especially from a molecular biological perspective, are required to confirm a direct transport role to plasma membrane-localized Cl(-)-stimulated ATPases. J. Exp. Zool. 289:215-223, 2001.  相似文献   

3.
Five widely documented mechanisms for chloride transport across biological membranes are known: anion-coupled antiport, Na+ and H(+)-coupled symport, Cl- channels and an electrochemical coupling process. These transport processes for chloride are either secondarily active or are driven by the electrochemical gradient for chloride. Until recently, the evidence in favour of a primary active transport mechanism for chloride has been inconclusive despite numerous reports of cellular Cl(-)-stimulated ATPases coexisting, in the same tissue, with uphill ATP-dependent chloride transport. Cl(-)-stimulated ATPase activity is a ubiquitous property of practically all cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase pump activity. Recent studies of Cl(-) -stimulated ATPase activity and ATP-dependent chloride transport in the same plasma membrane system, including liposomes, strongly suggest a mediation by the ATPase in the net movement of chloride up its electrochemical gradient across the plasma membrane structure. Contemporary evidence points to the existence of Cl(-)-ATPase pumps; however, these primary active transporters exist as either P-, F- or V-type ATPase pumps depending upon the tissue under study.  相似文献   

4.
A comparative study has been made of the effects of a variety of inhibitors on the plasma membrane ATPase and mitochondrial ATPase of Neurospora crassa. The most specific inhibitors proved to be vanadate and diethylstilbestrol for the plasma membrane ATPase and azide, oligomycin, venturicidin, and leucinostatin for mitochondrial ATPase. N,N′-Dicyclohexylcarbodiimide, octylguanidine, triphenylsulfonium chloride, and quercetin and related bioflavonoids inhibited both enzymes, although with different concentration dependences. Other compounds that were tested (phaseolin, fusicoccin, deoxycorticosterone, alachlor, salicyclic acid, N-1-napthylphthalamate, triiodobenzoic acid, cyclic AMP, cyclic GMP, theobromine, theophylline, and histamine) had no significant effect on either enzyme. Overall, the results indicate that the plasma membrane and mitochondrial ATPases are distinct enzymes, in spite of the fact that they may play related roles in H+ transport across their respective membranes.  相似文献   

5.
Variable ATPase composition of human tumor plasma membranes   总被引:2,自引:0,他引:2  
Purified plasma membranes from several transplantable human tumors exhibit very high Mg2+-dependent ATPase activities. Three types of Mg2+-dependent ATPases can be demonstrated: (1) an ouabain sensitive Na+, K+-ATPase, which is a minor component of the tumor plasma membrane ATPase, (2) a Mg2+-activated ATPase, which is a non-specific nucleoside triphosphatase, and (3) an ATPase activity stimulated by Na+ (or K+) alone. In three human melanomas, only the first two activities are found. In an astrocytoma and an oat cell carcinoma, all three activities are found. In the same two tumors, the plasma membrane Mg2+-ATPase is also stimulated by Con A. The relationship of these ATPases are discussed.  相似文献   

6.
Lack of Conventional ATPase Properties in CFTR Chloride Channel Gating   总被引:3,自引:0,他引:3  
CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mm). Higher concentrations of vanadate (10 mm) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for this transition state analogue is considerably different than that of other ABC transporters. Received: 18 September 1995/Revised: 9 January 1996  相似文献   

7.
The calcium transport ATPase and the copper transport ATPase are members of the P-ATPase family and retain an analogous catalytic mechanism for ATP utilization, including intermediate phosphoryl transfer to a conserved aspartyl residue, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi. Both ATPases undergo protein conformational changes concomitant with catalytic events. Yet, the two ATPases are prototypes of different features with regard to transduction and signaling mechanisms. The calcium ATPase resides stably on membranes delimiting cellular compartments, acquires free Ca2+ with high affinity on one side of the membrane, and releases the bound Ca2+ on the other side of the membrane to yield a high free Ca2+ gradient. These features are a basic requirement for cellular Ca2+ signaling mechanisms. On the other hand, the copper ATPase acquires copper through exchange with donor proteins, and undergoes intracellular trafficking to deliver copper to acceptor proteins. In addition to the cation transport site and the conserved aspartate undergoing catalytic phosphorylation, the copper ATPase has copper binding regulatory sites on a unique N-terminal protein extension, and has also serine residues undergoing kinase assisted phosphorylation. These additional features are involved in the mechanism of copper ATPase intracellular trafficking which is required to deliver copper to plasma membranes for extrusion, and to the trans-Golgi network for incorporation into metalloproteins. Isoform specific glyocosylation contributes to stabilization of ATP7A copper ATPase in plasma membranes.  相似文献   

8.
In all eukaryotic cells, P4 ATPases, also named phospholipid flippases, generate phospholipid asymmetry across biological membranes. This process is essential for cell survival, as it is required for vesicle budding and fusion in the secretory pathway. Several P4 ATPase isoforms can be identified in all sequenced eukaryotic genomes, but their evolution and interrelationships are poorly described. In this study, we conducted a thorough phylogenetic analysis of P4 ATPases in all major eukaryotic super-groups and found that they can be divided into three distinct families, P4A, P4B and P4C ATPases, all of which have an ancient origin. While P4B ATPases have been lost in plants, P4A ATPases are present in all eukaryotic super-groups. P4C ATPases form an intermediate group between the other two but appear to share a common origin with P4A ATPases. Sequence motifs unique to P4 ATPases are situated in the basal ATP hydrolyzing machinery. In addition, no clear signature motifs within P4 ATPase subgroups were found that could be related to lipid specificity, likely pointing to an elaborate transport mechanism in which different amino acid residue combinations in these pumps can result in recognition of the same substrate.  相似文献   

9.
A comparative study has been made of the effects of a variety of inhibitors on the plasma membrane ATPase and mitochondrial ATPase of Neurospora crassa. The most specific inhibitors proved to be vanadate and diethylstilbestrol for the plasma membrane ATPase and azide, oligomycin, venturicidin, and leucinostatin for mitochondrial ATPase. N,N'-Dicyclohexylcarbodiimide, octylguanidine, triphenylsulfonium chloride, and quercetin and related bioflavonoids inhibited both enzymes, although with different concentration dependences. Other compounds that were tested (phaseolin, fusicoccin, deoxycorticosterone, alachlor, salicyclic acid, N-1-napthylphthalamate, triiodobenzoic acid, cyclic AMP, cyclic GMP, theobromine, theophylline, and histamine) had no significant effect on either enzyme. Overall, the results indicate that the plasma membrane and mitochondrial ATPases are distinct enzymes, in spite of the fact that they may play related roles in H+ transport across their respective membranes.  相似文献   

10.
Cation pumps and lipid flippases of the P-type ATPase family maintain electrochemical gradients and asymmetric lipid distributions across membranes, and offer significant insight of protein:membrane interactions. The sarcoplasmic reticulum Ca(2+)-ATPase features flexible and adaptive interactions with the surrounding membrane, while the Na(+),K(+)-ATPase complex is modulated by membrane components and a role for the γ-subunit as a stabilizer of a specific lipid interaction with the α-subunit has been proposed. The first crystal structure of a heavy-metal transporting ATPase shows a markedly amphipathic helix at the cytoplasmic membrane surface, highlighting this structure as a general motif of all P-type ATPases although with specialization to different membranes. Residues of central importance for the lipid flippase activity of the P4-type ATPase subfamily have been pinpointed by mutational studies, but the transport pathway and mechanism remain unknown.  相似文献   

11.
Today we know there are four different types of ATPases that operate within biological membranes with the purpose of moving many different types of ions or molecules across these membranes. Some of these ions or molecules are transported into cells, some out of cells, and some in or out of organelles within cells. These ATPases span the biological world from bacteria to eukaryotic cells and have become most simply and commonly known as “transport ATPases.” The price that each cell type pays for transport work is counted in molecules of hydrolyzed ATP, a metabolic currency that is itself regenerated by a transport ATPase working in reverse, i.e., the ATP synthase. Four major classes of transport ATPases, the P, V, F, and ABC types are now known. In addition to being involved in many different types of biological/physiological processes, mutations in these proteins also account for a large number of diseases. The purpose of this introductory article to a mini-review series on transport ATPases is to provide the reader with a very brief and focused look at this important area of research that has an interesting history and bears significance to cell physiology, biochemistry, immunology, nanotechnology, and medicine, including drug discovery. The latter involves potential applications to a whole host of diseases ranging from cancer to those that affect bones (osteoporosis), ears (hearing), eyes (macromolecular degeneration), the heart (hypercholesterolemia/cardiac arrest,), immune system (immune deficiency disease), kidney (nephrotoxicity), lungs (cystic fibrosis), pancreas (diabetes and cystic fibrosis), skin (Darier disease), and stomach (ulcers).  相似文献   

12.
Two distinct membrane fractions containing H+-ATPase activity were prepared from red beet. One fraction contained a H+-ATPase activity that was inhibited by NO3 while the other contained a H+-ATPase inhibited by vanadate. We have previously proposed that these H+-ATPases are associated with tonoplast (NO3-sensitive) and plasma membrane (vanadate-sensitive), respectively. Both ATPase were examined to determine to what extent their activity was influenced by variations in the concentration of ATPase substrates and products. The substrate for both ATPase was MgATP2−, and Mg2+ concentrations in excess of ATP had only a slight inhibitory effect on either ATPase. Both ATPases were inhibited by free ATP (i.e. ATP concentrations in excess of Mg2+) and ADP but not by AMP. The plasma membrane ATPase was more sensitive than the tonoplast ATPase to free ATP and the tonoplast ATPase was more sensitive than the plasma membrane ATPase to ADP.

Inhibition of both ATPases by free ATP was complex. Inhibition of the plasma membrane ATPase by ADP was competitive whereas the tonoplast ATPase demonstrated a sigmoidal dependence on MgATP2− in the presence of ADP. Inorganic phosphate moderately inhibited both ATPases in a noncompetitive manner.

Calcium inhibited the plasma membrane but not the tonoplast ATPase, apparently by a direct interaction with the ATPase rather than by disrupting the MgATP2− complex.

The sensitivity of both ATPases to ADP suggests that under conditions of restricted energy supply H+-ATPase activity may be reduced by increases in ADP levels rather than by decreases in ATP levels per se. The sensitivity of both ATPases to ADP and free ATP suggests that modulation of cytoplasmic Mg2+ could modulate ATPase activity at both the tonoplast and plasma membrane.

  相似文献   

13.
Type IV P-type ATPases (P4-ATPases) are a large family of putative phospholipid translocases (flippases) implicated in the generation of phospholipid asymmetry in biological membranes. P4-ATPases are typically the largest P-type ATPase subgroup found in eukaryotic cells, with five members in Saccharomyces cerevisiae, six members in Caenorhabditis elegans, 12 members in Arabidopsis thaliana and 14 members in humans. In addition, many of the P4-ATPases require interaction with a noncatalytic subunit from the CDC50 gene family for their transport out of the endoplasmic reticulum (ER). Deficiency of a P4-ATPase (Atp8b1) causes liver disease in humans, and studies in a variety of model systems indicate that P4-ATPases play diverse and essential roles in membrane biogenesis. In addition to their proposed role in establishing and maintaining plasma membrane asymmetry, P4-ATPases are linked to vesicle-mediated protein transport in the exocytic and endocytic pathways. Recent studies have also suggested a role for P4-ATPases in the nonvesicular intracellular trafficking of sterols. Here, we discuss the physiological requirements for yeast P4-ATPases in phospholipid translocase activity, transport vesicle budding and ergosterol metabolism, with an emphasis on Drs2p and its noncatalytic subunit, Cdc50p.  相似文献   

14.
Two membrane fractions were obtained from 16%/26% and 34%/40%interfaces following discontinuous sucrose density gradientcentrifugation of a 10,000–80,000xg pellet from mung bean(Phaseolus mungo L.) roots. The ATPases in the fractions differedfrom each other in their sensitivity toward various inhibitors,activation with salts, dependence of activity on pH, and Kmfor ATP.Mg2+. Judging from their sensitivity toward inhibitors,the ATPases in the low and high density membranes are consideredmainly of tonoplast and plasma membrane origin, respectively.Both ATPases were activated by gramicidin D and nigericin. ATP-inducedquenching of quinacrine fluorescence in both fractions requiredMg2+ and permeant anions such as Cl and quenching wascollapsed by carbonylcyanide p-trifluoromethoxyphenyl hydrazone.The sensitivities of quenching to the inhibitors were essentiallythe same as those of ATPase activity in the membranes. Thesefindings suggest the involvement of ATPases in H+-pumping acrossa plasma membrane and tonoplast. (Received April 12, 1985; Accepted October 11, 1985)  相似文献   

15.
Abstract— The effects of lithium chloride in vitro and in vivo were investigated on Na-K ATPase and Mg ATPase activities in synaptic plasma membrane, mitochondrial and synaptic vesicle fractions prepared from rat brain. In vitro , lithium chloride (10−3-10−8 m ) had no effect on ATPase activity in any of the fractions studied. Lithium chloride given chronically by i.p. injection (30 mg/rat/day) for 9 days had little effect on synaptic plasma membrane ATPases. Dietary administration of lithium chloride (60 mmol/kg food) produced a small but significant increase in synaptic plasma membrane Mg ATPase activity after 3 weeks administration and mitochondrial Mg ATPase activity after 1 week. There was no effect on synaptic plasma membrane Na-K ATPase activity. Salt supplementation reduced the toxic effects of lithium administration and it is suggested that toxicity may account for some of the previously reported changes in synaptic membrane ATPases produced by lithium.  相似文献   

16.
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state.  相似文献   

17.
P4‐ATPases are phospholipid flippases that translocate phospholipids from the exoplasmic/luminal to the cytoplasmic leaflet of biological membranes. All P4‐ATPases in yeast and some in other organisms are required for membrane trafficking; therefore, changes in the transbilayer lipid composition induced by flippases are thought to be crucial for membrane deformation. However, it is poorly understood whether the phospholipid‐flipping activity of P4‐ATPases can promote membrane deformation. In this study, we assessed membrane deformation induced by flippase activity via monitoring the extent of membrane tubulation using a system that allows inducible recruitment of Bin/amphiphysin/Rvs (BAR) domains to the plasma membrane (PM). Enhanced phosphatidylcholine‐flippase activity at the PM due to expression of ATP10A, a member of the P4‐ATPase family, promoted membrane tubulation upon recruitment of BAR domains to the PM. This is the important evidence that changes in the transbilayer lipid composition induced by P4‐ATPases can deform biological membranes.  相似文献   

18.
Summary We have shown that a Ca++-ionophore activity is present in the (Ca+++Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A.E. Shamoo & D.H. MacLennan, 1974.Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca+++Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential-SH groups. However, it appears that there are no essential-SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential-SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

19.
P-type ATPases are a superfamily of membrane proteins involved in many physiological processes that are fundamental for all living organisms. Using ATP, they can transport a variety of ions and other substances across all types of cell membranes against a concentration electrochemical gradient. P-type ATPases form a phosphorylated intermediate and are sensitive to vanadate. Based on evolutionary relations and sequence homology, P-type ATPases are divided into five major families. All P-type ATPases share a simple structure and mechanism, but also possess domains characteristic for each family, which are crucial for substrate specificity. These proteins usually have a single subunit with eight to twelve transmembrane segments, a large central cytoplasmic domain with the conservative ATP binding site along with N and C termini exposed to the cytoplasm. Because of variety of proteins that belong to P-type ATPase superfamily, in this review the comparison of functional and structure properties of plant cells P-type ATPases is presented, as well as their important role in adaptation to environmental stress.  相似文献   

20.
This study reports on the distribution of bicarbonate-stimulated ATPase in rat intestinal epithelial cells. Brush-border membranes and basolateral membranes were separated from each other and from mitochondrial and other intracellular membranes by differential and density gradient centrifugation. Bicarbonate-sensitive ATPase activity followed the mitochondrial marker succinic dehydrogenase closely throughout all the centrifugation steps. The low HCO3--ATPase activity in purified brush-border and basolateral plasma membranes could be accounted for quantitatively by the small mitochondrial contamination. Consequently, there are no grounds for postulating that this enzyme has a direct role in H+ or HCO3- transport across the rat small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号