首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
Genomic replication of the negative-strand RNA viruses is dependent upon protein synthesis. To examine the requirement for protein synthesis in replication, we developed an in vitro system that supports the genome replication of defective interfering particles of the negative-strand rhabdovirus vesicular stomatitis virus (VSV), as a function of protein synthesis (Wertz, J. Virol. 46:513-522, 1983). The system consists of defective interfering nucleocapsid templates and an mRNA-dependent reticulocyte lysate to support protein synthesis. We report here an analysis of the requirement for individual viral proteins in VSV replication. Viral mRNAs purified by hybridization to cDNA clones were used to direct the synthesis of individual proteins in the in vitro system. By this method, it was demonstrated that the synthesis of the VSV nucleocapsid protein, N, alone, resulted in the replication of genome-length RNA by both defective interfering intracellular nucleocapsids and virion-derived nucleocapsids. Neither the viral phosphoprotein, NS, nor the matrix protein, M, supported RNA replication. The amount of RNA replication for a given amount of N protein was the same in reactions in which either all of the VSV proteins or only N protein were synthesized. In addition, RNA replication products synthesized in reactions containing only newly made N protein assembled with the N protein to form nucleocapsids. These results demonstrate that the major nucleocapsid protein (N) can by itself fulfill the requirement for protein synthesis in RNA replication and allow complete replication, i.e., initiation and elongation, as well as encapsidation of genome-length progeny RNA.  相似文献   

2.
3.
4.
5.
6.
We studied the effect pH had on the N-NS protein complex to determine its role in vesicular stomatitis virus (VSV) genome replication, as we had previously shown that VSV genome replication in vitro requires the interaction of the viral N and NS proteins into a 1:1 complex. A previous report showed that the growth of VSV in L cells was sensitive to the pH of the environment (M. Fiszman, J. B. Leaute, C. Chany, and M. Girard, J. Virol. 13:801-808, 1974). We hypothesized that low pH might disrupt the N-NS protein complex, and so we investigated the molecular events leading to inhibition of viral RNA replication in vitro from extracts that were prepared from VSV-infected cells incubated at pH 6.6. We found that viral genome RNA synthesis in vitro was reduced when infected cells were maintained at pH 6.6. Through immunoprecipitation analysis of the viral soluble protein pool, we found that a complex that usually exists between the N and NS proteins at pH 7.4 was altered in extracts from infected cells maintained at pH 6.6, and this was responsible for the observed effects on viral replication. The effect of low pH on the N-NS protein complex could not be abolished by increasing the concentration of the altered complex, indicating that the effects is more than simply a decrease in the level of the protein complex in the cell. Our data provide additional evidence that the 1:1 N-NS protein complex, and not the N protein alone, serves as the substrate for viral RNA replication in vivo.  相似文献   

7.
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.  相似文献   

8.
We report here an in vitro system designed to study the interactions of vesicular stomatitis virus (VSV) proteins with cellular membranes. We have synthesized the VSV nucleocapsid (N) protein, nonstructural (NS) protein, glycoprotein (G protein), and membrane (M) protein in a wheat germ, cell-free, protein-synthesizing system directed by VSV 12 to 18S RNA. When incubated at low salt concentrations with purified cytoplasmic membranes derived from Chinese hamster ovary cells, the VSV M andG proteins bind to membranes, whereas the VSV N and NS proteins do not. The VSV M protein binds to membranes in low or high divalent cation concentrations, whereas binding of significant amounts of G protein requires at least 5 mM magnesium acetate concentrations.  相似文献   

9.
Vesicular stomatitis virus mRNAs with these four types of 5'-termini, (a) m7G5'ppp5'(m)Am, (b) ppp5'(m)Am, (c) m7G5'-ppp5' Am, and (d) G5'ppp5'A, were prepared and their translation and ribosome binding analyzed in wheat germ and reticulocyte cell-free protein synthesis systems. The relative efficiencies of translation of individual vesicular stomatitis virus (VSV) mRNAs having type 2 termini ranged from 23 to 29% of the control (type 1) RNA in the reticulocyte system and 6 to 7% of control RNA in the wheat germ system. A similar difference between the two systems was seen in ribosome-binding experiments in which type 2 RNA formed an 80 S initiation complex with high efficiency (70% of control type 1 RNA) in the reticulocyte system, but with low efficiency (17% of control RNA) in the wheat germ system. Similar differences in the importance of m7G in translation in the two systems were seen when VSV mRNAs synthesized in vitro with type 3 and type 4 termini were analyzed. However, the analysis of type 4 RNA (which was synthesized in vitro in the presence of S-adenosylhomocysteine) was complicated by the presence of abnormally large poly(A) at its 3'-end. Another series of experiments showed that compounds such as 5'pm7G and m7G5'ppp5'Np are potent and specific inhibitors of translation of all types of VSV mRNAs in the wheat germ system (greater than 98% inhibition) but cause less than 20% inhibition of translation in the reticulocyte system. Taken together, all of the results indicate that a 5'-terminal m7G is far more important in translation of VSV mRNAs in the heterologous plant cell-free system than in the reticulocyte lysate system.  相似文献   

10.
Kim GN  Kang CY 《Journal of virology》2005,79(15):9588-9596
Defective interfering (DI) particles of Indiana serotype of vesicular stomatitis virus (VSV(Ind)) are capable of interfering with the replication of both homotypic VSV(Ind) and heterotypic New Jersey serotype (VSV(NJ)) standard virus. In contrast, DI particles from VSV(NJ) do not interfere with the replication of VSV(Ind) standard virus but do interfere with VSV(NJ) replication. The differences in the interfering activities of VSV(Ind) DI particles and VSV(NJ) DI particles against heterotypic standard virus were investigated. We examined the utilization of homotypic and heterotypic VSV proteins by DI particle genomic RNAs for replication and maturation into infectious DI particles. Here we show that the RNA-nucleocapsid protein (N) complex of one serotype does not utilize the polymerase complex (P and L) of the other serotype for RNA synthesis, while DI particle genomic RNAs of both serotypes can utilize the N, P, and L proteins of either serotype without serotypic restriction but with differing efficiencies as long as all three proteins are derived from the same serotype. The genomic RNAs of VSV(Ind) DI particles assembled and matured into DI particles by using either homotypic or heterotypic viral proteins. In contrast, VSV(NJ) DI particles could assemble only with homotypic VSV(NJ) viral proteins, although the genomic RNAs of VSV(NJ) DI particles could be replicated by using heterotypic VSV(Ind) N, P, and L proteins. Thus, we concluded that both efficient RNA replication and assembly of DI particles are required for the heterotypic interference by VSV DI particles.  相似文献   

11.
12.
13.
RNA was isolated from polyribosomes of vesicular stomatitis virus (VSV)-infected cells and tested for its ability to direct protein synthesis in extracts of animal and plant cells. In cell-free, non-preincubated extracts of rabbit reticulocytes, the 28S VSV RNA stimulated synthesis of a protein the size of the vesicular stomatitis virus L protein whereas the 13 to 15S RNA directed synthesis of the VSV M, N, NS, and possibly G proteins. In wheat germ extracts, 13 to 15S RNA also directed synthesis of the N, NS, M, and possibly G proteins. Analysis of extracts labeled with formyl [(35)S]methionine showed that the 28S RNA directed the initiation of synthesis of one protein, whereas the 13 to 15S RNA directed initiation of at least four proteins. It is concluded that the 28S RNA encodes only the L protein, whereas the 13 to 15S RNA is a mixture of species, presumably monocistronic, which code for the four other known vesicular stomatitis virus proteins.  相似文献   

14.
Erythrocyte-mediated microinjection was used to introduce [35S]polypeptides translated in vitro into 3T3-L1 cells. Such [35S]polypeptides are not degraded after loading into erythrocytes and are stable for the first 2 h after microinjection into growing 3T3-L1 cells. Similarly, little or no degradation of microinjected [35S]polypeptides is observed in either growing or confluent 3T3-L1 cells over a 70 h period. Microinjection of reticulocyte lysate alone does not affect the rate of degradation of long-lived endogenous protein. Reductively [3H]methylated lysate haemoglobin is degraded after microinjection by a cytosolic mechanism. Microinjected 125I-labelled bovine serum albumin is rapidly degraded by a cytosolic mechanism at the same rate in the absence or presence of reticulocyte lysate. The data do not support the notion that the observed lack of degradation of microinjected [35S]polypeptides translated in vitro is due to the presence of proteolytic inhibitors in reticulocyte lysates which can inhibit the degradation of microinjected or cellular proteins.  相似文献   

15.
16.
Analyses of prototype vesicular stomatitis (VSV, Indiana serotype) mRNA-32P-labeled viral RNA duplexes have established the assignments of 65 of the 72 large oligonucleotides that are recovered by two-dimensional electrophoresis of RNase T1 digests of the viral RNA. Fifty of the oligonucleotides are recovered in the L RNA duplex, four each in the N, M, and NS duplexes, and three in the G RNA duplex. Studies of three small defective-particle RNA species indicate that they have only L gene oligonucleotides in addition to three of the seven unassigned oligonucleotides. Some L gene ordering of oligonucleotides can be postulated from the defective-particle RNA sequence analyses. Analyses of naturally occurring alternate isolates of VSV Indiana have established that by comparison to the prototype virus strain, the alternate isolates minimally have genome sequence differences in L, G, N, NS and/or unassigned regions of the genome. Changes in the genome have also been induced by vitro high-level mutagenesis of the prototype virus.  相似文献   

17.
Translation initiation on poliovirus RNA occurs by internal binding of ribosomes to a sequence within the 5' untranslated region. We have previously characterized a HeLa cell protein, p52, that binds to a fragment of the poliovirus 5' untranslated region (K. Meerovitch, J. Pelletier, and N. Sonenberg, Genes Dev. 3:1026-1034, 1989). Here we report the purification of the HeLa p52. Protein microsequencing identified p52 as La autoantigen. The La protein is a human antigen that is recognized by antibodies from patients with autoimmune disorders such as systemic lupus erythematosus and Sjögren's syndrome. We show that the La protein stimulates translation of poliovirus RNA, but not brome mosaic virus, tobacco mosaic virus, and alfalfa mosaic virus 4 RNA, translation in a reticulocyte lysate. In addition, La corrects aberrant translation of poliovirus RNA in a reticulocyte lysate. Subcellular immunolocalization showed that La protein is mainly nuclear, but after poliovirus infection, La is redistributed to the cytoplasm. Our results suggest that La protein is involved in poliovirus internal initiation of translation and might function through a similar mechanism in the translation of cellular mRNAs.  相似文献   

18.
The cytoplasmically made subunit V of the yeast mitochondrial cytochrome bc1 complex is synthesized as a larger polypeptide in vitro. This was shown by programming a reticulocyte lysate with yeast RNA and immunoprecipitating the labeled translation products with a subunit V-specific antiserum. The larger form of subunit V could also be detected in pulse-labeled spheroplasts; upon a subsequent chase, most of it disappeared. A proteolytic fingerprint of the larger form was closely similar to that of the mature subunit. These data suggest that the cytoplasmically made subunit V is translated as a larger precursor which is cleaved to the mature subunit either during or after its entry into the mitochondria.  相似文献   

19.
The origin of the nonuniform size distribution of nascent rabbit globin peptides has been investigated in the reticulocyte lysate and wheat germ cell-free protein synthesis systems. Increasing the concentrations of the cellular components involved in protein synthesis failed to alter the elution pattern observed upon chromatographic analysis of reticulocyte lysate nascent chains. Nascent chains isolated from a globin messenger RNA-directed wheat germ cell-free system showed a nonuniform size distribution of nascent peptides similar to that of the rabbit reticulocyte nascent chains. These observations indicate that the nonuniformity of the globin nascent chains arises from a unique property of the messenger RNA being translated and not from limiting concentrations of a component or components of the reticulocyte protein synthesis system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号