首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Outer membrane protein A (OmpA) is a multifaceted predominant outer membrane protein of Escherichia coli and other Enterobacteriaceae whose role in the pathogenesis of various bacterial infections has recently been recognized. Here, the role of OmpA on the virulence of Shigella flexneri has been investigated. An ompA mutant of wild-type S. flexneri 5a strain M90T was constructed (strain HND92) and it was shown to be severely impaired in cell-to-cell spreading since it failed to plaque on HeLa cell monolayers. The lack of OmpA significantly reduced the levels of IcsA while the levels of cell associated and released IcsP-cleaved 95 kDa amino-terminal portion of the mature protein were similar. Nevertheless, the ompA mutant displayed IcsA exposed across the entire bacterial surface. Surprisingly, the ompA mutant produced proper F-actin comet tails, indicating that the aberrant IcsA exposition at bacterial lateral surface did not affect proper activation of actin-nucleating proteins, suggesting that the absence of OmpA likely unmasks mature or cell associated IcsA at bacterial lateral surface. Moreover, the ompA mutant was able to invade and to multiply within HeLa cell monolayers, although internalized bacteria were found to be entrapped within the host cell cytoplasm. We found that the ompA mutant produced significantly less protrusions than the wild-type strain, indicating that this defect could be responsible of its inability to plaque. Although we could not definitely rule out that the ompA mutation might exert pleiotropic effects on other S. flexneri genes, complementation of the ompA mutation with a recombinant plasmid carrying the S. flexneri ompA gene clearly indicated that a functional OmpA protein is required and sufficient for proper IcsA exposition, plaque and protrusion formation. Moreover, an independent ompA mutant was generated. Since we found that both mutants displayed identical virulence profile, these results further supported the findings presented in this study.  相似文献   

2.
In an effort to devise a safer and more effective vaccine delivery system, outer membrane vesicles (OMVs) were engineered to have properties of intrinsically low endotoxicity sufficient for the delivery of foreign antigens. Our strategy involved mutational inactivation of the MsbB (LpxM) lipid A acyltransferase to generate OMVs of reduced endotoxicity from Escherichia coli (E. coli) O157:H7. The chromosomal tagging of a foreign FLAG epitope within an OmpA-fused protein was exploited to localize the FLAG epitope in the OMVs produced by the E. coli mutant having the defined msbB and the ompA::FLAG mutations. It was confirmed that the desired fusion protein (OmpA::FLAG) was expressed and destined to the outer membrane (OM) of the E. coli mutant from which the OMVs carrying OmpA::FLAG are released during growth. A luminal localization of the FLAG epitope within the OMVs was inferred from its differential immunoprecipitation and resistance to proteolytic degradation. Thus, by using genetic engineering-based approaches, the native OMVs were modified to have both intrinsically low endotoxicity and a foreign epitope tag to establish a platform technology for development of multifunctional vaccine delivery vehicles.  相似文献   

3.
Summary A group of ompA mutants of Escherichia coli K12 are described which were sensitive to bacteriophage K3 in a background wild-type for lipopolysaccharide (LPS). With mutant LPS in vivo (lacking some core sugar residues), however, the ompA mutations gave resistance to K3. Outer membrane levels of OmpA protein were normal or near-normal when the mutations resided in either wild-type or mutant LPS backgrounds. Strains in which the mutations occurred in a wild-type LPS background adsorbed K3 phage at the same initial rate and to the same extent as a wild-type strain, but the efficiency of plaquing of the adsorbed K3 was reduced to 25–50% of wild-type levels. Under conditions where a wild-type strain irreversibly adsorbed over 90% of available phage K3 within 3 min, double mutants (ompA mutant, LPS mutant) left 90% of the phage viable after 1h. The 10% of inactivated phage did not form plaques.  相似文献   

4.
Summary Sixty-two E. coli mutants, selected as being deficient as recipients in F factor conjugation, are altered either in the amount or function of the outer membrane OmpA protein or in lipopolysaccharide structure. These two components may function together in conjugation, since the residual conjugation activity of a mutant lacking OmpA protein was unaffected by the additional presence of a lipopolysaccharide defect. Sixty of the strains carried mutations mapping to ompA, and these could be divided into classes depending on the amount of OmpA protein in their membranes. Representatives of these classes of mutant alleles failed to complement in diploids, indicating that they all affect the ompA structural gene and nearby sequences needed for its expression. The properties of these classes distinguish three groups of OmpA protein functions: 1) the structural function in the outer membrane in providing resistance to chelating agents and the hydrophobic antibiotic novobiocin, 2) the receptor functions in phage Tull* and K3 infection, and 3) the functions of binding cells together during conjugation, facilitating the uptake of receptorbound colicin K or L, and allowing phage Ox2 to infect. Different cellular amounts or sites in OmpA protein are thus required for these three groups of functions.  相似文献   

5.
A novel Escherichia coli outer membrane protein A (OmpA) was discovered through a proteomic investigation of cell surface proteins. DNA polymorphisms were localized to regions encoding the protein's surface-exposed loops which are known phage receptor sites. Bacteriophage sensitivity testing indicated an association between bacteriophage resistance and isolates having the novel ompA allele.  相似文献   

6.
Outer membrane protein A (OmpA) is a component of the outer membrane of Edwardsiella tarda and is wildly distributed in Enterobacteriaceae family. The gene encoding the OmpA protein was cloned from E. tarda and expressed in Escherichia coli M15 cells. The recombinant OmpA protein containing His6 residues was estimated to have a molecular weight of ∼38 kDa. In Western blot the native protein showed expression at ∼36 kDa molecular weight which was within the range of major outer membrane proteins (36–44 kDa) observed in this study. All E. tarda isolates tested harbored the ompA gene and the antibody raised to this protein was seen to cross react with other Gram negative bacteria. The OmpA protein characterized in this study was observed to be highly immunogenic in both rabbit and fish. In Enzyme linked immunosorbent assay, rabbit antisera showed an antibody titer of 1: 128,000. Common carp vaccinated with recombinant OmpA protein elicited high antibody production and immunized fish showed a relative percentage survival of 54.3 on challenge.  相似文献   

7.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

8.
9.
Outer membrane protein A (OmpA) is a component of the outer membrane of Edwardsiella tarda and is wildly distributed in Enterobacteriaceae family. The gene encoding the OmpA protein was cloned from E. tarda and expressed in Escherichia coli M15 cells. The recombinant OmpA protein containing His6 residues was estimated to have a molecular weight of ∼38 kDa. In Western blot the native protein showed expression at ∼36 kDa molecular weight which was within the range of major outer membrane proteins (36–44 kDa) observed in this study. All E. tarda isolates tested harbored the ompA gene and the antibody raised to this protein was seen to cross react with other Gram negative bacteria. The OmpA protein characterized in this study was observed to be highly immunogenic in both rabbit and fish. In Enzyme linked immunosorbent assay, rabbit antisera showed an antibody titer of 1: 128,000. Common carp vaccinated with recombinant OmpA protein elicited high antibody production and immunized fish showed a relative percentage survival of 54.3 on challenge.  相似文献   

10.
Summary The cloned ompA gene from Serratia marcescens was fully expressed in Escherichia coli and its product correctly assembled into the outer membrane. The S. marcescens polypeptide was not functionally equivalent to the E. coli OmpA protein, which serves as a phage receptor and as a component of several colincin uptake systems. DNA sequence analysis of the gene showed that three regions of the protein likely to be exposed on the cell surface not only differed extensively from the corresponding regions of the E. coli polypeptide but also from all other sequenced OmpA proteins. It is suggested that this sequence polymorphism represents a safety mechanism by which the various enterobacterial species can avoid cross-infection by noxious agents such as phages or colicins.  相似文献   

11.
Gram-negative bacteria, including Escherichia coli, release outer membrane vesicles (OMVs) that are derived from the bacterial outer membrane. OMVs contribute to bacterial cell–cell communications and host–microbe interactions by delivering components to locations outside the bacterial cell. In order to explore the molecular machinery involved in OMV biogenesis, the role of a major OMV protein was examined in the production of OMVs from E. coli W3110, which is a widely used standard E. coli K-12 strain. In addition to OmpC and OmpA, which are used as marker proteins for OMVs, an analysis of E. coli W3110 OMVs revealed that they also contain abundant levels of FliC, which is also known as flagellin. A membrane-impermeable biotin-labeling reagent did not label FliC in intact OMVs, but labeled FliC in sonically disrupted OMVs, suggesting that FliC is localized in the lumen of OMV. Compared to the parental strain expressing wild-type fliC, an E. coli strain with a fliC-null mutation produced reduced amounts of OMVs based on both protein and phosphate levels. In addition, an E. coli W3110-derived strain with a null-mutation in flgK, which encodes flagellar hook-associated protein that is essential along with FliC for flagella synthesis, also produced fewer OMVs than the parental strain. Taken together, these results indicate that the ability to form flagella, including the synthesis of flagella proteins, affects the production of E. coli W3110 OMVs.  相似文献   

12.
Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.  相似文献   

13.
In the standard method of transformation of Escherichia coli with extraneous DNA, cells are made competent for DNA uptake by incubating in ice-cold 100?mM CaCl2. Analysis of the whole protein profile of CaCl2-treated E. coli cells by the techniques of one- and two-dimensional gel electrophoresis, MALDI-MS and immunoprecipitation revealed overproduction of outer membrane proteins OmpC, OmpA and heat-shock protein GroEL. In parity, transformation efficiency of E. coli ompC mutant by plasmid pUC19 DNA was found to be about 40?% lower than that of the wild type strain. Moreover, in E. coli cells containing groEL-bearing plasmid, induction of GroEL caused simultaneous overproduction of OmpC. On the other hand, less OmpC was synthesized in E. coli groEL mutant compared to its wild type counterpart, by CaCl2-shock. From these results it can be suggested that in the process of CaCl2-mediated generation of competence, the heat-shock chaperone GroEL has specific role in DNA entry into the cell, possibly through the overproduced OmpC and OmpA porins.  相似文献   

14.
Klebsiella pneumoniae is an opportunistic pathogenic bacterium that commonly causes pneumonia in elderly people. OmpA, a toxin that is highly expressed in the outer membrane of the bacterium, is one of the primary factors implicated in the pulmonary pathogenesis of K. pneumoniae. To evaluate the associated pyroptosis mechanism of infection, the ompA gene was cloned, and the protein was expressed, extracted, and used to treat human larynx epithelial cells. We observed that OmpA induces reactive oxygen species production and cell-cycle arrest in the G2/M phase in host cells, leading to subsequent apoptosis. Moreover, OmpA was found to induce IL-1β and IL-18 production in host cells, resulting in caspase-1 activation, which simultaneously stimulated pyroptosis, thus leading to the death of the host cells. We next sought to examine differential gene expression via RNA sequencing to better elucidate the mechanisms associated with these cellular changes, and found that genes associated with these pathways were more highly expressed in OmpA-treated cells than in K. pneumoniae-infected cells. Thus, cell-cycle arrest, apoptosis, and pyroptosis may serve as the primary defenses employed by host cells against OmpA. These results provide novel insights into the host defense against K. pneumoniae infection.  相似文献   

15.
Under most conditions of growth, the most abundant protein in the outer membrane of most strains of Escherichia coli is a protein designated as “protein 1” or “matrix protein”. In E. coli B, this protein has been shown to be a single polypeptide with a molecular mass of 36,500 and it may account for more than 50% of the total outer membrane protein. E. coli K-12 contains a very similar, although probably not identical, species of protein 1. Some pathogenic E. coli strains contain very little protein 1 and, in its place, make a protein designated as protein 2 which migrates faster on alkaline polyacrylamide gels containing sodium dodecyl sulfate and which gives a different spectrum of CNBr peptides. An E. coli K-12 strain which had been mated with a pathogenic strain was found to produce protein 2, and a temperate bacteriophage was isolated from this K-12 strain after induction with UV light. This phage, designated as PA-2, is similar in morphology and several other properties to phage lambda. When strains of E. coli K-12 are lysogenized by phage PA-2, they produce protein 2 and very little protein 1. Adsorption to lysogenic strains grown under conditions where they produce little protein 1 and primarily protein 2 is greatly reduced as compared to non-lysogenic strains which produce only protein 1. However, when cultures are grown under conditions of catabolite repression, protein 2 is reduced and protein 1 is increased, and lysogenic and non-lysogenic cultures grown under these conditions exhibit the same rate of adsorption. Phage PA-2 does not adsorb to E. coli B, which appears to have a slightly different protein 1 from K-12. These results suggest that protein 1 is the receptor for PA-2, and that protein 2 is made to reduce the superinfection of lysogens.  相似文献   

16.
omp T: Escherichia coli K-12 structural gene for protein a (3b)   总被引:12,自引:11,他引:1       下载免费PDF全文
Chromosomal DNA from strain UT400, a previously described deletion mutant of Escherichia coli K-12 that lacks outer membrane protein a, failed to hybridize with plasmid DNA (pGGC110) containing the structural gene for protein a. We designate the genetic locus for protein a, located at approximately 12.5 min of the E. coli chromosome, ompT.  相似文献   

17.
The receptor protein for the phage T6 and colicin K, coded by the tsx gene, facilitated the diffusion of all nucleosides and deoxynucleosides except cytidine and deoxcytidine through the outer membrane of Escherichia coli K-12 and Escherichia coli B. The tsx protein was coregulated with the nucleoside uptake system. Constitutive cytR and deoR mutants contained higher amounts of this protein than wild type strains. There was a good correlation between the initial rate of nucleoside uptake and the adsorption rate of phage T6. From the observation that nucleosides did not compete with each other in the translocation across the outer membrane and that they did not inhibit T6 adsorption it was concluded that the tsx protein forms a pore to which nucleosides have only little if any binding affinity.A major outer membrane protein specified by the ompA gene influenced the function of the tsx protein. Outer membranes of ompA mutants showed an enhanced binding of colicin K but the strains were colicin K insensitive (tolerant). The T6 phage adsorbed at the same rate and plated with the same efficiency as to ompA + strains. The uptake rate of thymidine and of adenosine was reduced by 16–33% in ompA mutants.The adsorption rate of phage T6 on mutants with altered lipopolysaccharide was the same or even higher than on wild type strains. However the plating efficiency was reduced ranging from 0–46%. Lipopolysaccharide plays no role in the primary adsorption of phage T6 but it is apparently required in a later step of the infection process.Non Standard Abbreviations LPS lipopolysaccharide - cAMP-CRP complex of cyclic adenosine 3,5-monophosphate (cAMP) and its receptor protein (CRP)  相似文献   

18.
The 325-residue outer membrane protein OmpA of Escherichia coli has been proposed to consist of a membrane-embedded moiety (residues 1 to about 170) and a C-terminal periplasmic region. The former is thought to comprise eight transmembrane segments in the form of antiparallel β-strands, forming an amphiphilic β connected by exposed turns. Several questions concerning this model were addressed. Thus no experimental evidence had been presented for the turns at the inner leaflet of the membrane and it was not known whether or not the periplasmic part of the polypeptide plays a role in the process of membrane incorporation. Oligonucleotides encoding trypsin cleavage sites were inserted at the predicted turn sites of the ompA gene and it was shown that the encoded proteins indeed become accessible to trypsin at the modified sites. Together with previous results, these data also show that the turns on both sides of the membrane do not possess specifically topogenic information. In two cases one of the two expected tryptic fragments was lost and could be detected at low concentration in only one case. Therefore, bilateral proteolytic digestion of outer membranes can cause loss of β-strands and does not necessarily produce a reliable picture of protein topology. When ompA genes were constructed coding for proteins ending at residue 228 or 274, the membrane assembly of these proteins was shown to be partially defective with about 20% of the proteins not being assembled. No such defect was observed when, following the introduction of a premature stop codon, a truncated protein was produced ending with residue 171. It is concluded that (1) the proposed β-barrel structure is essentially correct and (2) the periplasmic part of OmpA does not play an active role in, but can, when present in mutant form, interfere with membrane assembly.  相似文献   

19.
20.

Background

Yersinia enterocolitica outer membrane protein A (OmpA) is one of the major outer membrane proteins with high immunogenicity. We performed the polymorphism analysis for the outer membrane protein A and putative outer membrane protein A (p-ompA) family protein gene of 318 Y. enterocolitica strains.

Results

The data showed all the pathogenic strains and biotype 1A strains harboring ystB gene carried both ompA and p-ompA genes; parts of the biotype 1A strains not harboring ystB gene carried either ompA or p-ompA gene. In non-pathogenic strains (biotype 1A), distribution of the two genes and ystB were highly correlated, showing genetic polymorphism. The pathogenic and non-pathogenic, highly and weakly pathogenic strains were divided into different groups based on sequence analysis of two genes. Although the variations of the sequences, the translated proteins and predicted secondary or tertiary structures of OmpA and P-OmpA were similar.

Conclusions

OmpA and p-ompA gene were highly conserved for pathogenic Y. enterocolitica. The distributions of two genes were correlated with ystB for biotype 1A strains. The polymorphism analysis results of the two genes probably due to different bio-serotypes of the strains, and reflected the dissemination of different bio-serotype clones of Y. enterocolitica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号