首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migration of endothelial cells is one of the first cellular responses in the cascade of events that leads to re-endothelialization of an injured vessel and neovascularization of growing tissues and tumors. To examine the hypothesis that endothelial cells express a specific migration-associated phenotype, we analyzed the cell surface glycoprotein expression of migrating bovine aortic endothelial cell (BAECs). Light microscopic analysis revealed an upregulation of binding sites for the lectins Concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin after neuraminidase treatment (N-PNA) on migrating endothelial cells relative to contact-inhibited cells. These findings were confirmed and quantitated with an enzyme-linked lectin assay (ELLA) of circularly scraped BAEC monolayers. The expression of migration-associated cell surface glycoproteins was also analyzed by SDS-PAGE. The overall expression of cell surface glycoproteins was upregulated on migrating BAECs. Migrating BAECs expressed Con A- and WGA-binding glycoproteins with apparent molecular masses of 25 and 48 kD that were not expressed by contact-inhibited BAEC monolayers and, accordingly, disappeared as circularly scraped monolayers reached confluence. Subconfluent BAEC monolayers expressed the same cell surface glycoconjugate pattern as migrating endothelial cells. FACS analysis of circularly scraped BAEC monolayers showed that the phenotypic changes of cell surface glycoprotein expression after release from growth arrest occurred before the recruitment of the cells into the cell cycle (3 vs. 12 h). Suramin, which inhibits endothelial cell migration, abrogated the expression of the migration-associated phenotype and induced the expression of a prominent 28-kD Con A- and WGA-binding cell surface glycoprotein. These results indicate that endothelial cells express a specific migration-associated phenotype, which is characterized by the upregulation of distinct cellular glycoconjugates and the expression of specific migration-associated cell surface glycoproteins.  相似文献   

2.
Bovine aortic endothelial cell (BAEC) attachments to laminin, fibronectin, and fibrinogen are inhibited by soluble arginine-glycine-aspartate (RGD)-containing peptides, and YGRGDSP activity is responsive to titration of either soluble peptide or matrix protein. To assess the presence of RGD-dependent receptors, immunoprecipitation and immunoblotting studies were conducted and demonstrated integrin beta 1, beta 3, and associated alpha subunits as well as a beta 1 precursor. Immunofluorescence of BAECs plated on laminin, fibronectin, and fibrinogen reveals different matrix-binding specificities of each of these integrin subclasses. By 1 h after plating, organization of beta 1 integrin into fibrillar streaks is influenced by laminin and fibronectin, whereas beta 3 integrin punctate organization is influenced by fibrinogen and the integrin spatial distribution changes with time in culture. In contrast, the nonintegrin laminin-binding protein LB69 only organizes after cell-substrate contact is well established several hours after plating. Migration of BAECs is also mediated by both integrin and nonintegrin matrix-binding proteins. Specifically, BAEC migration on laminin is remarkably sensitive to RGD peptide inhibition, and, in its presence, beta 1 integrin organization dissipates and reorganizes into perinuclear vesicles. However, RGD peptides do not alter LB69 linear organization during migration. Similarly, agents that block LB69--e.g., antibodies to LB69 as well as YIGSR-NH2 peptide--do not inhibit attachment of nonmotile BAECs to laminin. However, both anti-LB69 and YIGSR-NH2 inhibit late adhesive events such as spreading. Accordingly, we propose that integrin and nonintegrin extracellular matrix-binding protein organizations in BAECs are both temporally and spatially segregated during attachment processes. High affinity nonintegrin interaction with matrix may create necessary stable contacts for longterm attachment, while lower affinity integrins may be important for initial cell adhesion as well as for transient contacts of motile BAECs.  相似文献   

3.
Yeast actin-binding proteins: evidence for a role in morphogenesis   总被引:20,自引:8,他引:12       下载免费PDF全文
《The Journal of cell biology》1988,107(6):2551-2561
Three yeast actin-binding proteins were identified using yeast actin filaments as an affinity matrix. One protein appears to be a yeast myosin heavy chain; it is dissociated from actin filaments by ATP, it is similar in size (200 kD) to other myosins, and antibodies directed against Dictyostelium myosin heavy chain bind to it. Immunofluorescence experiments show that a second actin-binding protein (67 kD) colocalizes in vivo with both cytoplasmic actin cables and cortical actin patches, the only identifiable actin structures in yeast. The cortical actin patches are concentrated at growing surfaces of the yeast cell where they might play a role in membrane and cell wall insertion, and the third actin-binding protein (85 kD) is only detected in association with these structures. This 85-kD protein is therefore a candidate for a determinant of growth sites. The in vivo role of this protein was tested by overproduction; this overproduction causes a reorganization of the actin cytoskeleton which in turn dramatically affects the budding pattern and spatial growth organization of the yeast cell.  相似文献   

4.
The bovine aortic endothelial cell (BAEC) cytoskeleton is a complex structure modulated by many stimuli including release from contact inhibition and various components of the extracellular matrix (ECM). Transduction of information from the ECM to the cell nucleus proceeds via several complex pathways including the cytoskeleton. We have demonstrated the presence of an immunoreactive isoform of the human erythrocyte cytoskeletal protein band 4.1 (4.1) in BAEC. BAEC 4.1 is similar in molecular weight to the erythroid protein by immunoblot analyses and produces a similar pattern of cysteine specific cleavage products consistent with a cluster of cysteine residues previously described in the erythroid molecule. We have also examined the effects of defined ECM proteins on the distributions of cultured BAEC 4.1 and actin filaments (AF) at confluency and following release from contact inhibition. The distribution of 4.1 in BAEC on a plasma fibronectin substrate is complex, having partial codistribution with cytoplasmic AF and a unique perinuclear staining. In contrast, on a collagen type I/III substrate, 4.1 is localized, in part, to peripheral areas of cell-cell contact distinct from the dense peripheral band staining of AF. During migration on this substrate, 4.1 had a filamentous distribution having partial codistribution with AF. Indirect immunofluorescence staining of cross-sections of bovine calf aortae revealed a cortical staining pattern in the aortic endothelial cells with staining noted on the luminal and basolateral aspects of the cells. These data suggest that, in endothelial cells, protein 4.1 is a cortical membrane protein which may function to link actin filaments to other skeletal proteins such as spectrin. These findings also suggest an active role for protein 4.1 in cytoskeletal reorganization events which can occur in response to external stimuli, such as the extracellular matrix or contact with other cells.  相似文献   

5.
Nonmuscle caldesmon purified from cultured rat cells shows a molecular weight of 83,000 on SDS gels, Stokes radius of 60.5 A, and sedimentation coefficient (S20,w) of 3.5 in the presence of reducing agents. These values give a native molecular weight of 87,000 and a frictional ratio of 2.04, suggesting that the molecule is a monomeric, asymmetric protein. In the absence of reducing agents, the protein is self-associated, through disulfide bonds, into oligomers with a molecular weight of 230,000 on SDS gels. These S-S oligomers appear to be responsible for the actin-bundling activity of nonmuscle caldesmon in the absence of reducing agents. Actin binding is saturated at a molar ratio of one 83-kD protein to six actins with an apparent binding constant of 5 X 10(6) M-1. Because of 83-kD nonmuscle caldesmon and tropomyosin are colocalized in stress fibers of cultured cells, we have examined effects of 83-kD protein on the actin binding of cultured cell tropomyosin. Of five isoforms of cultured rat cell tropomyosin, tropomyosin isoforms with high molecular weight values (40,000 and 36,500) show higher affinity to actin than do tropomyosin isoforms with low molecular weight values (32,400 and 32,000) (Matsumura, F., and S. Yamashiro-Matsumura. 1986. J. Biol. Chem. 260:13851-13859). At physiological concentration of KCl (100 mM), 83-kD nonmuscle caldesmon stimulates binding of low molecular weight tropomyosins to actin and increases the apparent binding constant (Ka from 4.4 X 10(5) to 1.5 X 10(6) M-1. In contrast, 83-kD protein has slight stimulation of actin binding of high molecular weight tropomyosins because high molecular weight tropomyosins bind to actin strongly in this condition. As the binding of 83-kD protein to actin is regulated by calcium/calmodulin, 83-kD protein regulates the binding of low molecular weight tropomyosins to actin in a calcium/calmodulin-dependent way. Using monoclonal antibodies to visualize nonmuscle caldesmon along microfilaments or actin filaments reconstituted with purified 83-kD protein, we demonstrate that 83-kD nonmuscle caldesmon is localized periodically along microfilaments or actin filaments with similar periodicity (36 +/- 4 nm) as tropomyosin. These results suggest that 83-kD protein plays an important role in the organization of microfilaments, as well as the control of the motility, through the regulation of the binding of tropomyosin to actin.  相似文献   

6.
《The Journal of cell biology》1989,109(4):1711-1723
The sensory epithelium of the chick cochlea contains only two cell types, hair cells and supporting cells. We developed methods to rapidly dissect out the sensory epithelium and to prepare a detergent-extracted cytoskeleton. High salt treatment of the cytoskeleton leaves a "hair border", containing actin filament bundles of the stereocilia still attached to the cuticular plate. On SDS-PAGE stained with silver the intact epithelium is seen to contain a large number of bands, the most prominent of which are calbindin and actin. Detergent extraction solubilizes most of the proteins including calbindin. On immunoblots antibodies prepared against fimbrin from chicken intestinal epithelial cells cross react with the 57- and 65-kD bands present in the sensory epithelium and the cytoskeleton. It is probable that the 57-kD is a proteolytic fragment of the 65-kD protein. Preparations of stereocilia attached to the overlying tectorial membrane contain the 57- and 65-kD bands. A 400-kD band is present in the cuticular plate. By immunofluorescence, fimbrin is detected in stereocilia but not in the hair borders after salt extraction. The prominent 125 A transverse stripping pattern characteristic of the actin cross-bridges in a bundle is also absent in hair borders suggesting fimbrin as the component that gives rise to the transverse stripes. Because the actin filaments in the stereocilia of hair borders still remain as compact bundles, albeit very disordered, there must be an additional uncharacterized protein besides fimbrin that cross-links the actin filaments together.  相似文献   

7.
Actin-based gels were prepared from clarified high-salt extracts of human platelets by dialysis against physiological salt buffers. The gel was partially solubilized with 0.3 M KCl. Mice were immunized with the 0.3 M KCl extract of the actin gel, and hybridomas were produced by fusion of spleen cells with myeloma cells. Three hybridomas were generated that secrete antibodies against an 80-kD protein. These monoclonal antibodies stained stress fibers in cultured cells and cross-reacted with proteins in several tissue types, including smooth muscle. The cross-reacting protein in chicken gizzard smooth muscle had an apparent molecular weight of 140,000 and was demonstrated to be caldesmon, a calmodulin and actin-binding protein (Sobue, K., Y. Muramoto, M. Fujita, and S. Kakiuchi, Proc. Natl. Acad. Sci. USA, 78:5652-5655). No proteins of molecular weight greater than 80 kD were detectable in platelets by immunoblotting using the monoclonal antibodies. The 80-kD protein is heat stable and was purified using modifications of the procedure reported by Bretscher for the rapid purification of smooth muscle caldesmon (Bretscher, A., 1985, J. Biol. Chem., 259:12873-12880). The 80-kD protein bound to calmodulin-Sepharose in a Ca++-dependent manner and sedimented with actin filaments, but did not greatly increase the viscosity of F-actin solutions. The actin-binding activity was inhibited by calmodulin in the presence of calcium. Except for the molecular weight difference, the 80-kD platelet protein appears functionally similar to 140-kD smooth muscle caldesmon. We propose that the 80-kD protein is platelet caldesmon.  相似文献   

8.
The 55-kD protein is a new actin-bundling protein purified from HeLa cells (Yamashiro-Matsumura, S., and F. Matsumura, 1985, J. Biol. Chem., 260:5087-5097). We have prepared monoclonal antibodies against the 55-kD protein and examined its intracellular localization, as well as its spatial relationships with other components of microfilaments in cultured cells by double-label immunofluorescence. The localization of the 55-kD protein is similar to that of actin. The antibody to the 55-kD protein stained strongly both microspikes and stress fibers. The 55-kD protein was found from the basal portions to the extremities of microspikes while alpha-actinin was localized only in the basal portions. In stress fibers, the 55-kD protein was found rather continuously in comparison to the periodic localizations of alpha-actinin and tropomyosin. Although fimbrin is located in microspikes and ruffling membranes, fimbrin is hardly found in stress fibers unlike the 55-kD protein. These observations coupled with the actin-bundling activity of the 55-kD protein imply that the 55-kD protein is involved in the formation of microfilament bundles in both microspikes and stress fibers.  相似文献   

9.
We investigated the distribution of microtubules and microfilaments in some exocrine and endocrine cells in rats. Microtubules were stained by applying an immunofluorescent technique using antibodies against beta-tubulin, while microfilaments were stained with rhodamine-phalloidin, which binds selectively to polymerized actin filaments. In the cytoplasm of some exocrine cells (pancreatic acinar cells and ventral prostatic epithelial cells), the microtubules were distributed longitudinally from the apical region to the basal region, but no microtubules were found in the nuclear region. In exocrine cells, most of the microfilaments were localized beneath the apical plasma membrane. In some endocrine cells (those of the adenohypophysis and the islets of Langerhans), the microtubules exhibited a radial or reticular distribution in the cytoplasm, and intense fluorescence was observed in the perinuclear region. The immunofluorescence produced by the antibodies against beta-tubulin was more intense in endocrine cells than in exocrine cells. The microfilaments observed in the endocrine cells studied were homogenously distributed beneath the plasma membrane. Dot-like rhodamine-phalloidin staining was often observed in the cytoplasm of both the exocrine and endocrine cells. The present study clearly demonstrated marked differences in the distribution of cytoskeletal elements in exocrine and endocrine cells, and these may reflect differences in the secretory direction of such cells as well as in epithelial-cell polarity.  相似文献   

10.
The migration of capillaries into mouse embryonic kidneys grafted on quail chorioallantoic membrane (CAM) was analyzed by two monoclonal antibodies against quail endothelial and haematopoietic cells. As shown by immunohistochemistry, the quail chorioallantoic vessels invaded the kidney explant. Initially, the capillaries were detected in the interstitial stroma and, soon thereafter, tightly adjacent to the branches of the ureteric bud. The induced mesenchymal cell condensates, the prospective nephric vesicles, were avascular, but when the early S-shaped body was formed, the capillaries invaded its lower crevice. Finally chimeric glomeruli consisting of mouse podocytes and quail endothelial cells, were formed and, contemporarily, the capillaries ceased to migrate. Within the endothelial-mesangial area of the chimeric glomeruli, all cells expressed the quail-type nuclear structure and were stained by the quail endothelial-specific antibodies. The pattern of migrating capillaries was compared to the distribution of the extracellular matrix (ECM) molecules by double staining with polyclonal antibodies against laminin or fibronectin, and monoclonal quail endothelial-specific antibodies. Initially, the capillaries migrated in a fibronectin-rich matrix, devoid of laminin, but when the epithelial kidney tubules formed, some capillaries attached to the newly formed epithelial basement membrane. At no stage were the capillaries seen to penetrate the epithelial basement membrane. The orderly branching of the ureteric bud, followed by the formation of nephrons and the shift in the ECM, might create pathways for an oriented capillary migration. The fibronectin-rich areas could be a scaffold for the capillary migration, and the attachment to the basement membranes a means for their cessation.  相似文献   

11.
The effect of the suppression of expression of the actin-binding protein caldesmon on the motility of nonmuscle cells has been studied. A more than a fivefold decrease in the content of this protein in cells by RNA interference led to the disturbance of the formation of actin stress fibers and acceleration of cell migration to the zone of injury of the monolayer. A stimulation of stationary cells by serum induced more than 1,5-fold accumulation of stress fibers only in control cells, but not in caldesmon-deficient cells. Similarly, the accumulation of actin filaments was observed in actively migrating cells of only wild type, but not in the cells with low caldesmon content. These changes occurred mainly at the leading edge of the migrating cell where the distinct structure of actin filaments was not seen in the absence of caldesmon. It was assumed that caldesmon inhibits cell migration due to the stabilization of actin in filaments and a decrease in the dynamics of monomeric actin at the leading edge of the migrating cell.  相似文献   

12.
Amoeba proteus, the highly motile free-living unicellular organism, has been widely used as a model to study cell motility. However, molecular mechanisms underlying its unique locomotion and intracellular actin-based-only trafficking remain poorly understood. A search for myosin motors responsible for vesicular transport in these giant cells resulted in detection of 130-kDa protein interacting with several polyclonal antibodies against different tail regions of human and chicken myosin VI. This protein was binding to actin in the ATP-dependent manner, and immunoprecipitated with anti-myosin VI antibodies. In order to characterize its possible functions in vivo, its cellular distribution and colocalization with actin filaments and dynamin II during migration and pinocytosis were examined. In migrating amoebae, myosin VI immunoanalog localized to vesicular structures, particularly within the perinuclear and sub-plasma membrane areas, and colocalized with dynamin II immunoanalog and actin filaments. The colocalization was even more evident in pinocytotic cells as proteins concentrated within pinocytotic pseudopodia. Moreover, dynamin II and myosin VI immunoanalogs cosedimented with actin filaments, and were found on the same isolated vesicles. Blocking endogenous myosin VI immunoanalog with anti-myosin VI antibodies inhibited the rate of pseudopodia protrusion (about 19% decrease) and uroidal retraction (about 28% decrease) but did not affect cell morphology and the manner of cell migration. Treatment with anti-human dynamin II antibodies led to changes in directionality of amebae migration and affected the rate of only uroidal translocation (about 30% inhibition). These results indicate that myosin VI immunoanalog is expressed in protist Amoeba proteus and may be involved in vesicle translocation and cell locomotion.  相似文献   

13.
The emergent flagellum of euglenoids and trypanosomatids contained in addition to microtubules a prominent filamentous structure—the flagellar rod (paraflageliar/paraxonemal rod). Immunoblots and immunofluorescence localization using three antibodies generated against gel-isolated proteins confirmed previous studies that the Euglena flagellar rod consisted of polypeptides migrating at 66-, 69-, and 75-kD. Immunoblotting after two dimensional gel electrophoresis identified ten or more isoforms of these polypeptides. Differences in migration in acrylamide gels under nonreducing and reducing conditions suggested that the rod proteins contain intramolecular disulfide linkages. Comparative peptide mapping showed that the 66-. 69-, and 75-kD polypeptides were distinct, but related proteins, and also identified a fourth related protein migrating at 64-kD. Using antibodies against rod proteins, two overlapping cDNAs were isolated and from their sequences the cDNAs were predicted to encode 334 amino acids of the 66-kD protein: the amino acid sequence had >65% identity to the carboxyl-terminus of the trypanosomatid flagellar rod proteins. Secondary structural prediction suggested that flagellar rod proteins contain an extended segmented coiled coil stalk and two nonhelical heads. Coiled coil appeared to be an important structural motif in the construction of flagellar rod filaments.  相似文献   

14.
Intestinal epithelia have a brush border membrane of numerous microvilli each comprised of a cross-linked core bundle of 15-20 actin filaments attached to the surrounding membrane by lateral cross-bridges; the cross-bridges are tilted with respect to the core bundle. Isolated microvillar cores contain actin (42 kD) and three other major proteins: fimbrin (68 kD), villin (95 kD), and the 110K-calmodulin complex. The addition of ATP to detergent-treated isolated microvillar cores has previously been shown to result in loss of the lateral cross-bridges and a corresponding decrease in the amount of the 110-kD polypeptide and calmodulin associated with the core bundle. This provided the first evidence to suggest that these lateral cross-bridges to the membrane are comprised at least in part by a 110-kD polypeptide complexed with calmodulin. We now demonstrate that purified 110K-calmodulin complex can be readded to ATP-treated, stripped microvillar cores. The resulting bundles display the same helical and periodic arrangement of lateral bridges as is found in vivo. In reconstitution experiments, actin filaments incubated in EGTA with purified fimbrin and villin form smooth-sided bundles containing an apparently random number of filaments. Upon addition of 110K-calmodulin complex, the bundles, as viewed by electron microscopy of negatively stained images, display along their entire length helically arranged projections with the same 33-nm repeat of the lateral cross-bridges found on microvilli in vivo; these bridges likewise tilt relative to the bundle. Thus, reconstitution of actin filaments with fimbrin, villin, and the 110K-calmodulin complex results in structures remarkably similar to native microvillar cores. These data provide direct proof that the 110K-calmodulin is the cross-bridge protein and indicate that actin filaments bundled by fimbrin and villin are of uniform polarity and lie in register. The arrangement of the cross-bridge arms on the bundle is determined by the structure of the core filaments as fixed by fimbrin and villin; a contribution from the membrane is not required.  相似文献   

15.
Cofilin is an essential component of the yeast cortical cytoskeleton   总被引:30,自引:17,他引:13       下载免费PDF全文
We have biochemically identified the Saccharomyces cerevisiae homologue of the mammalian actin binding protein cofilin. Cofilin and related proteins isolated from diverse organisms are low molecular weight proteins (15-20 kD) that possess several activities in vitro. All bind to monomeric actin and sever filaments, and some can stably associate with filaments. In this study, we demonstrate using viscosity, sedimentation, and actin assembly rate assays that yeast cofilin (16 kD) possesses all of these properties. Cloning and sequencing of the S. cerevisiae cofilin gene (COF1) revealed that yeast cofilin is 41% identical in amino acid sequence to mammalian cofilin and, surprisingly, has homology to a protein outside the family of cofilin- like proteins. The NH2-terminal 16kD of Abp1p, a 65-kD yeast protein identified by its ability to bind to actin filaments, is 23% identical to yeast cofilin. Immunofluorescence experiments showed that, like Abp1p, cofilin is associated with the membrane actin cytoskeleton. A complete disruption of the COF1 gene was created in diploid cells. Sporulation and tetrad analysis revealed that yeast cofilin has an essential function in vivo. Although Abp1p shares sequence similarity with cofilin and has the same distribution as cofilin in the cell, multiple copies of the ABP1 gene cannot compensate for the loss of cofilin. Thus, cofilin and Abp1p are structurally related but functionally distinct components of the yeast membrane cytoskeleton.  相似文献   

16.
The 110K-calmodulin complex isolated from intestinal microvilli is an ATPase consisting of one polypeptide chain of 110 kD in association with three to four calmodulin molecules. This complex is presumably the link between the actin filaments in the microvillar core and the surrounding cell membrane. To study its structural regions, we have partially cleaved the 110K-calmodulin complex with alpha-chymotrypsin; calmodulin remains essentially intact under the conditions used. As determined by 125I-calmodulin overlays, ion exchange chromatography, and actin-binding assays, a 90-kD digest fragment generated in EGTA remains associated with calmodulin. The 90K-calmodulin complex binds actin in an ATP-reversible manner and decorates actin filaments with an arrow-head appearance similar to that found after incubation of F-actin with the parent complex; binding occurs in either calcium- or EGTA-containing buffers. ATPase activity of the 90-kD digest closely resembles the parent complex. In calcium a digest mixture containing fragments of 78 kD, a group of three at approximately 40 kD, and a 32-kD fragment (78-kD digest mixture) is generated with alpha-chymotrypsin at a longer incubation time; no association of these fragments with calmodulin is observed. Time courses of digestions and cyanogen bromide cleavage indicate that the 78-kD fragment derives from the 90-kD peptide. The 78-kD mixture can also hydrolyze ATP. Furthermore, removal of the calmodulin by ion exchange chromatography from this 78-kD mixture had no effect on the ATPase activity of the digest, indicating that the ATPase activity resides on the 110-kD polypeptide. The 78 kD, two of the three fragments at approximately 40 kD, and the 32-kD fragments associate with F-actin in an ATP-reversible manner. Electron microscopy of actin filaments after incubation with the 78-kD digest mixture reveals coated filaments, although the prominent arrowhead appearance characteristic of the parent complex is not observed. These data indicate that calmodulin is not required either for the ATPase activity or the ATP-reversible binding of the 110K-calmodulin complex to F-actin. In addition, since all the fragments that bind F-actin do so in an ATP-reversible manner, the sites required for F-actin binding and ATP reversibility likely reside nearby.  相似文献   

17.
The role of microfilaments and microtubules during injury-induced cell migration of corneal endothelial cells in situ along their natural basement membrane has been investigated using organ culture. In the noninjured tissue, actin is localized at or near the plasma membrane, whereas tubulin is observed as a delicate lattice pattern throughout the cytoplasm. Twenty-four hours after a circular freeze injury, cells surrounding the wound area extend processes into this region. Fluorescent microscopy using phallotoxins and anti-tubulin antibodies demonstrated the presence of stress fibers and microtubule reorganization within these cells. Between 24 and 48 h post-injury endothelial cells move into the wound region, and by 48 h, the injury zone is repopulated and the monolayer is becoming reestablished. When injured corneas are placed in media containing 5 x 10(-7) M cytochalasin B, endothelial cell migration occurs; but it is slow, and wound closure is not complete even by 72 h. In contrast, when tissues are cultured in the presence of 10(-8) M colchicine, cell movement is greatly reduced, complete wound closure does not occur, and endothelial cells at the wound edge fail to display extensions typical of migrating cells. Furthermore, when injured endothelia are exposed to 0.05 micrograms/ml of actinomycin D for 15 min within the first hour after injury and transferred back into culture media lacking the drug for the duration of the experiment, migration does not occur and the wound persists. These actinomycin D treated cells remain viable as shown by their ability to incorporate 3H-uridine and 3H-thymidine. Fluorescence microscopy of actinomycin D treated tissues revealed the presence of stress filaments but disorganized microtubule patterns. Interestingly, 24 h after injury, if the tissue is exposed to actinomycin D, even for periods of up to 1 h, migration is not inhibited. Our results indicate that injury-induced endothelial cell movement appears to be more dependent on microtubule than microfilament reorganization and may require a critical timing of macromolecular synthesis.  相似文献   

18.
《The Journal of cell biology》1987,105(6):2511-2521
The ability of purified extracellular matrix components to promote the initial migration of amphibian neural crest (NC) cells was quantitatively investigated in vitro. NC cells migrated avidly on fibronectin (FN), displaying progressively more extensive dispersion at increasing amounts of material incorporated in the substrate. In contrast, dispersion on laminin substrates was optimal at low protein concentrations but strongly reduced at high concentrations. NC cells were unable to migrate on substrates containing a high molecular mass chondroitin sulfate proteoglycan (ChSP). When proteolytic peptides, representing isolated functional domains of the FN molecule, were tested as potential migration substrates, the cell binding region of the molecule (105 kD) was found to be as active as the intact FN. A 31- kD heparin-binding fragment also stimulated NC cell migration, whereas NC cells dispersed to a markedly lower extent on the isolated collagen- binding domain (40 kD), or the latter domain linked to the NH2-terminal part of the FN molecule. Migration on the intact FN was partially inhibited by antibodies directed against the 105- and 31-kD fragments, respectively; dispersion was further decreased when the antibodies were used in combination. Addition of the ChSP to the culture medium dramatically perturbed NC cell migration on substrates of FN, as well as of 105- or 31-kD fragments. However, preincubation of isolated cells or substrates with ChSP followed by washing did not affect NC cell movement. The use of substrates consisting of different relative amounts of ChSP and the 105-kD peptide revealed that ChSP counteracted the motility-promoting activity of the 105-kD FN fragment in a concentration-dependent manner also when bound to the substrate. Our results indicate that NC cell migration on FN involves two separate domains of the molecule, and that ChSP can modulate the migratory behavior of NC cells moving along FN-rich pathways and may therefore influence directionally and subsequent localization of NC cells in the embryo.  相似文献   

19.
Laminin- and elastin-binding proteins were isolated by ligand affinity chromatography from plasma membranes of fetal bovine auricular chondroblasts and human A2058 melanoma cells. From both cell types, a 67-kDa protein was identified which bound to either elastin or laminin affinity resins. Structural and functional similarities between the elastin and laminin-binding proteins were suggested by 1) cross-reactivity between antibodies directed against the two proteins; 2) elution of the laminin receptor from laminin columns with soluble elastin peptides; and 3) modulation of substrate binding by galactoside sugars. In addition, extraction properties indicate that both receptors are peripheral membrane proteins whose association with the cell surface is mediated by their lectin properties. Mapping of the binding site on laminin suggests that the 67-kDa chondroblast receptor interacts with a hydrophobic elastin-like sequence in domain V of the B1 chain, and chemotaxis studies indicate that cell migration to elastin peptides and laminin involves the same receptor.  相似文献   

20.
Two Triton-insoluble fractions were isolated from Acanthamoeba castellanii. The major non-membrane proteins in both fractions were actin (30-40%), myosin II (4-9%), myosin I (1-5%), and a 55-kD polypeptide (10%). The 55-kD polypeptide did not react with antibodies against tubulins from turkey brain, paramecium, or yeast. All of these proteins were much more concentrated in the Triton-insoluble fractions than in the whole homogenate or soluble supernatant. The 55-kD polypeptide was extracted with 0.3 M NaCl, fractionated by ammonium sulfate, and purified to near homogeneity by DEAE-cellulose and hydroxyapatite chromatography. The purified protein had a molecular mass of 110 kD and appeared to be a homodimer by isoelectric focusing. The 110-kD dimer bound to F-actin with a maximal binding stoichiometry of 0.5 mol/mol of actin (1 mol of 55-kD subunit/mol of actin). Although the 110-kD protein enhanced the sedimentation of F-actin, it did not affect the low shear viscosity of F-actin solutions nor was bundling of F-actin observed by electron microscopy. The 110-kD dimer protein inhibited the actin-activated Mg2+-ATPase activities of Acanthamoeba myosin I and myosin II in a concentration-dependent manner. By indirect immunofluorescence, the 110-kD protein was found to be localized in the peripheral cytoplasm near the plasma membrane which is also enriched in F-actin filaments and myosin I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号