首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A diet containing an inert marker (ballotini beads, quantified by X-radiography) was used to quantify the transport of two essential minerals, Ca2+ and Mg2+ from the diet during the digestion and absorption of a single meal of commercial trout food (3% ration). Initially, net uptake of Ca2+ was observed in the stomach followed by subsequent Ca2+ fluxes along the intestine which were variable, but for the most part secretory. This indicated a net secretion of Ca2+ along the intestinal tract resulting in a net assimilation of dietary Ca2+ of 28%. Similar handling of Ca2+ and Mg2+ was observed along the gastrointestinal tract (GI), although net assimilation differed substantially between the cations, with Mg2+ assimilation being close to 60%, mostly a result of greater uptake by the stomach. The stomach displayed the highest net uptake rates for both cations (1.5 and 1.3 mmol kg−1 fish body mass for Ca2+ and Mg2+, respectively), occurring within 2 h following ingestion of the meal. Substantial secretions of both Ca2+ and Mg2+ were observed in the anterior intestine, which were attributed to bile and other intestinal secretions, while fluxes in the mid and posterior intestine were small and variable. The overall patterns of Ca2+ and Mg2+ handling in the GI tract were similar to those observed for Na+ and K+ (but not Cl) in a previous study. Overall, these results emphasize the importance of dietary electrolytes in ionoregulatory homeostasis.  相似文献   

2.
The single Ca2+ channel activity was obtained from cell-attached patch recordings with the use of pipettes filled with 100 mM Ba2+ as the charge carrier in myocytes isolated from the lateral oviduct of cricket Gryllus bimaculatus. The following results were obtained. (1) The channel had a unitary conductance of 18 pS. (2) The open time histogram of the channel could be fitted with a single exponential while the closed time histogram could be fitted with the sum of two exponentials, suggesting that there are at least one open state and two closed states for this channel. (3) The open probability of the channel increased with increasing membrane depolarization. (4) The mean current reconstructed by averaging individual current trace responses inactivated slowly and the current–voltage relationship for the peak mean current showed a bell-shaped relation. (5) The dihydropyridine (DHP) Ca2+ antagonist, nifedipine, reduced the mean current by increasing the proportion of blank sweeps. On the other hand, the DHP Ca2+ agonist, Bay K 8644, increased the mean current by increasing the mean open-times of the channel. These results confirm a presence of DHP-sensitive L-type Ca2+ channel in myocytes isolated from the lateral oviduct of cricket G. bimaculatus.  相似文献   

3.
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.  相似文献   

4.
Annexin A5 (AnxA5) binds to negatively charged phospholipid membranes in a Ca2+ dependent manner. Several studies already demonstrate that Mg2+ ions cannot induce the binding. In this paper, quartz crystal microbalance with dissipation monitoring (QCM-D), Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) and molecular dynamics (MD) were performed to elucidate the high specificity of Ca2+ versus Mg2+ on AnxA5 binding to membrane models. In the presence of Ca2+, AnxA5 showed a strong interaction with lipids, the protein is adsorbed mainly in α-helix under the DMPS monolayer, with an orientation of the α-helices axes slightly tilted with respect to the normal of the phospholipid monolayer as revealed by PMIRRAS. The Ca2+ ions interact strongly with the phosphate group of the phospholipid monolayer. In the presence of Mg2+, instead of Ca2+, no interaction of AnxA5 with lipids was detected. Molecular dynamics simulations allow us to explain the high specificity of calcium. Ca2+ ions are well exposed and surrounded by labile water molecules at the surface of the protein, which then favour their binding to the phosphate group of the membrane, explaining their specificity. To the contrary, Mg2+ ions are embedded in the protein structure, with a smaller number of water molecules strongly bound. We conclude that the embedded Mg2+ ions inside the AnxA5 structure are not able to link the protein to the phosphate group of the phospholipids for this reason.  相似文献   

5.
Werner M. Kaiser  Steve Huber 《Planta》1994,193(3):358-364
Nitrate reductase in spinach (Spinacia oleracea L.) leaves was rapidly inactivated in the dark and reactivated by light, whereas in pea (Pisum sativum L.), roots, hyperoxic conditions caused inactivation, and anoxia caused reactivation. Reactivation in vivo, both in leaves and roots, was prohibited by high concentrations (10–30 M) of the serine/threonine-protein phosphatase inhibitors okadaic acid or calyculin, consistent with the notion that protein dephosphorylation catalyzed by type-1 or type-2A phosphatases was the mechanism for the reactivation of NADH-nitrate reductase (NR). Following inactivation of leaf NR in vivo, spontaneous reactivation in vitro (in desalted extracts) was slow, but was drastically accelerated by removal of Mg2+ with excess ethylenediaminetetraacetic acid (EDTA), or by desalting in a buffer devoid of Mg2+. Subsequent addition of either Mg2+, Mn2+ or Ca2+ inhibited the activation of NR in vitro. Reactivation of NR (at pH 7.5) in vitro in the presence of Mg2+ was also accelerated by millimolar concentrations of AMP or other nucleoside monophosphates. The EDTA-mediated reactivation in desalted crude extracts was completely prevented by protein-phosphatase inhibitors whereas the AMP-mediated reaction was largely unaffected by these toxins. The Mg2+-response profile of the AMP-accelerated reactivation suggested that okadaic acid, calyculin and microcystin-LR were rather ineffective inhibitors in the presence of divalent cations. However, with partially purified enzyme preparations (5–15% polyethyleneglycol fraction) the AMPmediated reactivation was also inhibited (65–80%) by microcystin-LR. Thus, the dephosphorylation (activation) of NR in vitro is inhibited by divalent cations, and protein phosphatases of the PP1 or PP2A type are involved in both the EDTA and AMP-stimulated reactions. Evidence was also obtained that divalent cations may regulate NR-protein phosphatase activity in vivo. When spinach leaf slices were incubated in Mg2+ -and Ca2+-free buffer solutions in the dark, extracted NR was inactive. After addition of the Ca2+ /Mg2+-ionophore A 23187 plus EDTA to the leaf slices, NR was activated in the dark. It was again inactivated upon addition of divalent cations (Mg2+ or Ca2+). It is tentatively suggested that Mg2+ fulfills several roles in the regulatory system of NR: it is required for active NR-protein kinase, it inactivates the protein phosphatase and is, at the same time, necessary to keep phospho-NR in the inactive state. The EDTA- and AMP-mediated reactivation of NR in vitro had different pH optima, suggesting that two different protein phosphatases may be involved. At pH 6.5, the activation of NR was relatively slow and the addition or removal of Mg2+ had no effect. However, 5-AMP was a potent activator of the reaction with an apparent K m of 0.5 mM. There was also considerable specificity for 5AMP relative to 3- or 2-AMP or other nucleoside monophoposphates. We conclude that, depending upon conditions, the signals triggering NR modulation in vivo could be either metabolic (e.g. 5-AMP) or physical (e.g. cytosolic [Mg2+]) in nature.Abbreviations DTT dithiothreitol - Mops 3-(N-morpholino)propanesulfonic acid - NR NADH-nitrate reductase - NRA nitrate-reductase activity - PP protein phosphatase This paper is dedicated to Prof. O.K. Volk on the occasion of his 90th birthdayThe skilled technical assistance of Elke Brendle-Behnisch is gratefully acknowledged. The investigations were cooperatively supported by the Deutsche Forschungsgemeinschaft (SFB 251), the U.S. Department of Agriculture, Agricultural Research Services, Raleigh, NC. This work was also supported in part by a grant from the U.S. Department of Energy (Grant DE-A I05-91 ER 20031 to S.C.H.).  相似文献   

6.
The lobster (Homarus americanus) hepato-pancreatic epithelial baso-lateral cell membrane possesses three transport proteins that transfer calcium between the cytoplasm and hemolymph: an ATP-dependent calcium ATPase, a sodium-calcium exchanger, and a verapamil-sensitive cation channel. We used standard centrifugation methods to prepare purified hepato-pancreatic baso-lateral membrane vesicles and a rapid filtration procedure to investigate whether 65Zn2+ transfer across this epithelial cell border occurs by any of these previously described transporters for calcium. Baso-lateral membrane vesicles were osmotically reactive and exhibited a time course of uptake that was linear for 10–15 s and approached equilibrium by 120 s. In the absence of sodium, 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed the Michaelis-Menten equation for carrier transport. This carrier transport was stimulated by the addition of 150 M ATP (increase in Km and Jmax) and inhibited by the simultaneous presence of 150 mol l–1 ATP+250 mol l–1 vanadate (decrease in both Km and Jmax). In the absence of ATP, 65Zn2+ influx was a sigmoidal function of preloaded vesicular sodium concentration (0, 5, 10, 20, 30, 45, and 75 mmol l–1) and exhibited a Hill Coefficient of 4.03±1.14, consistent with the exchange of 3 Na+/1Zn2+. Using Dixon analysis, calcium was shown to be a competitive inhibitor of baso-lateral membrane vesicle 65Zn2+ influx by both the ATP-dependent (Ki=205 nmol l–1 Ca2+) and sodium-dependent (Ki=2.47 mol l–1 Ca2+) transport processes. These results suggest that zinc transport across the lobster hepato-pancreatic baso-lateral membrane largely occurred by the ATP-dependent calcium ATPase and sodium-calcium exchanger carrier proteins.Communicated by: I.D. Hume  相似文献   

7.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

8.
Macroscopic instantaneous and time-dependent currents have been measured in the vacuolar membrane of Beta vulgaris using a patch clamp configuration analogous to whole cell mode. At low cytosolic Ca2+ and in the absence of Mg2+, only an instantaneous current was observed. This current is carried predominantly by cations (PKPCl 71, pnapcl 41 and arginine is also conducted). The instantaneous current can be activated by ATP4– (e.g., ATP-activated mean K+ current density was –20 mA.m–2 at a membrane voltage of –20 mV) and by increasing cytosolic pH and Mg2+ (raising Mg2+ from 0 to 0.4 mm induced a mean current density increase of –7 mA.m–2 at –20 mV). Such current can be activated by simultaneous addition of putative in vivo concentrations of ATP4–/MgATP/Mg free 2+ (in the presence of bafilomycin to inhibit the vacuolar ATPase) and further modulated by cytosolic pH. With vacuolar K+ concentration greater than that of the cytosol, activation of the instantaneous current would mediate vacuolar K+ release over the range of physiological membrane voltage. It is argued that the ATP4–-activated current, in addition to acting as a K+ mobilization pathway, could provide a counter-ion (shunt) conductance, allowing the two electrogenic H+ pumps which reside in the vacuolar membrane to acidify the vacuolar lumen.A separate time-dependent current, which was not observed at low Ca2+ concentrations (less than 500 nm) could also be elicited by addition of Mg2+ at the cytoplasmic membrane face. This current was stimulated by increasing cytoplasmic pH.The authors are grateful to the BBSRC for financial support (Grant PG87/529) and to the Royal Society (University Research Fellowship to J.M.D.). We thank C. Abbott, K. Partridge and J. Robinson for plant cultivation; A. Amtmann, A. Bertl, D. Gradmann and G. Thiel for helpful discussion.  相似文献   

9.
Summary Experiments were performed to obtain information on: (i) the specific properties of Ca2+ binding and transport in yeast (ii) the relationship between both parameters; (iii) similarities to or differences from other biological systems as measured by the effects of inhibitors; and (iv) the effects of mono and divalent cations, in order to get some insight on the specificity and some characteristics of the mechanism of the transport system for divalent cations in yeast.The results obtained gave some kinetic parameters for a high affinity system involved in the transport of Ca2+ in yeast. These were obtained mainly by considering actual concentrations of Ca2+ in the medium after substracting the amounts bound to the cell. Ak m of 1.9 m and aV max of 1.2 nmol (100 mg·3 min)–1 were calculated.The effects of some inhibitors and other cations on Ca2+ uptake allow one to postulate some independence between binding and transport for this divalent cation.Of the inhibitors tested, only lanthanum seems to be a potent inhibitor of Ca2+ uptake in yeast.The effects of Mg2+ on the uptake of Ca2+ agree with the existence of a single transport system for both divalent cations.The actions of Na+ and K+ on the transport of Ca2+ offer interesting possibilities to study further some of the mechanistic properties of this transport system for divalent cations.  相似文献   

10.
Cation/H+ exchangers (CAXs) are membrane proteins that transport Ca2+ and other cations using the H+ gradient generated by H+-ATPase or H+-pyrophosphatase. This study reports the characterization of CAX2 from Puccinellia tenuiflora with respect to molecular and functional properties. PutCAX2 was cloned from a cDNA library of P. tenuiflora seedlings. The expression of PutCAX2 in shoots and roots was induced by Ca2+ and Ba2+ treatments. A green fluorescent protein (GFP) marker revealed that PutCAX2 was located on the endoplasmic reticulum (ER) membrane. Four yeast transformants were created using GFP fusion PutCAX2 and truncated PutCAX2s, and their growth in the presence of various cations (Fe3+, Al3+, Mn2+, Cu2+, Co2+, Ni2+, Mg2+, Zn2+, Na+, Li+, Ca2+, and Ba2+) was analyzed. The N-terminally truncated PutCAX2 (GFP-ΔNPutCAX2) and the N and C-terminally truncated PutCAX2 (GFP-ΔNCPutCAX2) transformants grew well in the presence of 100 and 150 mM Ca2+ or 8 and 20 mM Ba2+, whereas the GFP-PutCAX2 and C-terminally truncated PutCAX2 (GFP-ΔCPutCAX2) transformants did not show any tolerance to Ca2+ or Ba2+. The Ba2+ content in whole yeast cells expressing GFP-ΔNPutCAX2 or GFP-ΔNCPutCAX2 was lower than that in other yeast transformants. Moreover, the efflux experiment showed that the Ba2+ efflux rate of yeast cells expressing GFP-ΔNPutCAX2 and GFP-ΔNCPutCAX2 was higher than that of other yeast cells. To our knowledge, this is the first report on the molecular and functional characterization of a novel ER-localized CAX protein from a wild halophyte plant; the results suggest that the N-terminus of PutCAX2 acts as an auto-inhibitory domain, which affects the Ca2+ and Ba2+ tolerance of yeast.  相似文献   

11.
Two new bismacrocyclic Gd3+ chelates containing a specific Ca2+ binding site were synthesized as potential MRI contrast agents for the detection of Ca2+ concentration changes at the millimolar level in the extracellular space. In the ligands, the Ca2+-sensitive BAPTA-bisamide central part is separated from the DO3A macrocycles either by an ethylene (L1) or by a propylene (L2) unit [H4BAPTA is 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; H3DO3A is 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid]. The sensitivity of the Gd3+ complexes towards Ca2+ and Mg2+ was studied by 1H relaxometric titrations. A maximum relaxivity increase of 15 and 10% was observed upon Ca2+ binding to Gd2L1 and Gd2L2, respectively, with a distinct selectivity of Gd2L1 towards Ca2+ compared with Mg2+. For Ca2+ binding, association constants of log K = 1.9 (Gd2L1) and log K = 2.7 (Gd2L2) were determined by relaxometry. Luminescence lifetime measurements and UV–vis spectrophotometry on the corresponding Eu3+ analogues proved that the complexes exist in the form of monohydrated and nonhydrated species; Ca2+ binding in the central part of the ligand induces the formation of the monohydrated state. The increasing hydration number accounts for the relaxivity increase observed on Ca2+ addition. A 1H nuclear magnetic relaxation dispersion and 17O NMR study on Gd2L1 in the absence and in the presence of Ca2+ was performed to assess the microscopic parameters influencing relaxivity. On Ca2+ binding, the water exchange is slightly accelerated, which is likely related to the increased steric demand of the central part leading to a destabilization of the Ln–water binding interaction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Summary The aggregation, leakage, and fusion of pure PS (phosphatidylserine) and mixed PS/PC (phosphatidylcholine) sonicated vesicles were studied by light scattering, the release of encapsulated carboxyfluorescein, and a new fusion assay which monitors the mixing of the internal compartments of fusing vesicles. On a time scale of 1 min the extent of fusion was considerably greater than leakage. The Ca2+ and Mg2+ concentrations required to induce fusion increased when the PS content of the vesicles was decreased, and/or when the NaCl concentration was increased.Calculations employing a modified Gouy-Chapman equation and experimentally determined intrinsic binding constants of Na+ and Ca2+ to PS were shown to predict correctly the amount of Ca2+ bound in mixed PS/PC vesicles. For vesicles composed of either pure PS or of mixtures with PC in 100mM NaCl (41 and 21 PS/PC); the induction of fusion (on a time scale of minutes) occurred when the amount of Ca or Mg bound/PS molecule exceeded 0.35–0.39. The induction of fusion for both pure PS and PS/PC mixed vesicles (with PS exceeding 50%) can be explained by assuming that destabilization of these vesicles requires a critical binding ratio of divalent cations to PS.  相似文献   

13.
Thylakoids and Photosystem II particles prepared from the cyanobacterium Synechococcus PCC 7942 washed with a HEPES/glycerol buffer exhibited low rates of light-induced oxygen evolution. Addition of either Ca2+ or Mg2+ to both thylakoids and Photosystem II particles increased oxygen evolution independently, maximal rates being obtained by addition of both ions. If either preparation was washed with NaCl, light induced O2 evolution was completely inhibited, but re-activated in the same manner by Ca2+ and Mg2+ but to a lower level. In the presence of Mg2+, the reactivation of O2 evolution by Ca2+ allowed sigmoid kinetics, implying co-operative binding. The results are interpreted as indicating that not only Ca2+, but also Mg2+, is essential for light-induced oxygen evolution in thylakoids and Photosystem II particles from Synechococcus PC 7942. The significance of the reactivation kinetics is discussed. Reactivation by Ca2+ was inhibited by antibodies to mammalian calmodulin, indicating that the binding site in Photosystem II may be analogous to that of this protein.Abbreviation HEPES n-2-Hydroxyethylpiperazine--2-ethane sulphonic acid  相似文献   

14.
Outside-out configuration of the patch clamp technique was used to test whether an intracellular application of G protein activator (GTPS) affects ATP-activated Ca2+-permeable channels in rat macrophages without any agonist in the bath solution. With 145 mm K+ (pCa 8.0) in the pipette solution, activity of channels permeable to a variety of divalent cations and Na+ was observed and general channel characteristics were found to be identical to those of ATP-activated ones. Absence of extracellular ATP makes it possible to avoid the influence of ATP receptor desensitization and to study the channel selectivity using a number of divalent cations (105 mm) and Na+ (145 mm) as the charge carriers. Permeability sequence estimated by extrapolated reversal potential measurements was: Ca2+ Ba2+ Mn2+ Sr2+ Na+ K+ = 68 30 26 10 3.5 1. Slope conductances (in pS) for permeant ions rank as follows: Ca2+ Sr2+ Na+ Mn2+ Ba2+ = 19 18 14 12 10. Unitary Ca2+ currents display a tendency to saturate with the Ca2+ concentration increase with apparent dissociation constant (K d ) of 10 mm. No block of Na+ permeation by extracellular Ca2+ in millimolar range was found. The data obtained suggest that (i) activation of some G protein is sufficient to gate the channels without the ATP receptor being occupied, (ii) the ATP receptor activation results in the gating of a special channel with the properties that differ markedly from those of the receptoroperated or voltage-gated Ca2+-permeable channels on the other cell types.DeceasedThe authors are grateful to K. Kiselyov and A. Mamin for technical assistance. The work was supported by the Russian Basic Research Foundation, Grant N 93-04-21722 and was made possible in part by Grant N R4A000 from the International Science Foundation.  相似文献   

15.
Liu M  Hasenstein KH 《Planta》2005,220(5):658-666
La3+ ions are known to antagonize Ca2+ and are used as a Ca2+ channel blocker but little is known on the direct effects of La3+. Micromolar La3+ concentrations promoted root growth while higher concentrations were inhibitory. The uptake of La3+ in maize root protoplasts revealed a membrane binding component (0.14 and 0.44 pmol min–1 protoplast–1 for 100 and 1,000 M La3+) followed by a slower concentration and time-dependent uptake. Uptake was reduced by Ca2+, but had no substantial effect on other ions. La3+ shifted microtubule organization from random to parallel but caused aggregation of microfilaments. Our data suggest that La3+ is taken up into plant cells and affects growth via stabilization of the cytoskeleton.  相似文献   

16.
Cd2+ is highly toxic to Staphylococcus aureus since it blocks dithiols in cytoplasmic 2-oxoglutarate dehydrogenase complex (ODHC) participating in energy conservation process. However, S. aureus 17810R is Cd2+-resistant due to possession of cadA-coded Cd2+ efflux system, recognized here as P-type Cd2+-ATPase. This Cd2+ pump utilizing cellular energy—ATP, ?μ H + (electrochemical proton potential) and respiratory protons, extrudes Cd2+ from cytoplasm to protect dithiols in ODHC, but the mechanism of Cd2+ extrusion remains unknown. Here we propose that two Cd2+ taken up by strain 17810R via Mn2+ uniporter down membrane potential (?ψ) generated during glutamate oxidation in 100 mM phosphate buffer (high PiB) are trapped probably by high affinity sites in cytoplasmic domain of Cd2+-ATPase, forming SCdS. This stops Cd2+ transport towards dithiols in ODHC, allowing undisturbed NADH production, its oxidation and energy conservation, while ATP could change orientation of SCdS towards facing transmembrane channel. Now, increased number of Pi-dependent protons pumped electrogenically via respiratory chain and countertransported through the channel down ?ψ, extrude two trapped cytoplasmic Cd2+, which move to low affinity sites, being then extruded into extracellular space via ?ψ-dependent Cd2+/H+ exchange. In 1 mM phosphate buffer (low PiB), external Cd2+ competing with decreased number of Pi-dependent protons, binds to ψs of Cd2+-ATPase channel, enters cytoplasm through the channel down ?ψ via Cd2+/Cd2+ exchange and blocks dithiols in ODHC. However, Mg2+ pretreatment preventing external Cd2+ countertransport through the channel down ?ψ, allowed undisturbed NADH production, its oxidation and extrusion of two cytoplasmic Cd2+ via Cd2+/H+ exchange, despite low PiB.  相似文献   

17.
The review brings together the data on neuromuscular transmission upon substitution of different alkaline earth metals for Ca2+ ions. It is known that due to the low selectivity of calcium channels and their ability to conduct other divalent cations, a considerable presynaptic current carried by strontium or barium may develop, which under certain conditions may lead to the neuromuscular transmission. The review illustrates how the equimolar substitution of external Ca2+ by other polyvalent cations affects the parameters of nonquantum, spontaneous, and induced quantum exocytosis of the neuromediator, as well as endocytosis and the activities of acetylcholinesterase and postsynaptic receptors. The effects of the modulators of synaptic transmission under these conditions are also considered.  相似文献   

18.
We have used the human calcium- and temperature-dependent (HaCaT) keratinocyte cell line to elucidate mechanisms of switching from a proliferating to a differentiating state. When grown in low calcium medium (<0.1 mM) HaCaT cells proliferate. However, an increase in the calcium concentration of the culture medium, [Ca2+]0, induces growth arrest and the cells start to differentiate. Numerous studies have already shown that the increase in [Ca2+]0 results in acute and sustained increases in intracellular calcium concentration, [Ca2+]i. We find that the Ca2+-induced cell differentiation of HaCaT cells is also accompanied by a significant decrease in mitochondrial membrane potential, DeltaPsi. By combining patch-clamp electrophysiological recordings and microspectrofluorimetric measurements of DeltaPsi on single cells, we show that the increase in [Ca2+]i led to DeltaPsi depolarization. In addition, we report that tetraethylammonium (TEA), a blocker of plasma membrane K+ channels, which is known to inhibit cell proliferation, and 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), a blocker of plasma membrane Cl channels, also affect DeltaPsi. Both these agents stimulate HaCaT cell differentiation. These data therefore strongly suggest a direct causal relationship between depolarization of DeltaPsi and the inhibition of proliferation and induction of differentiation in HaCaT keratinocytes.  相似文献   

19.

Background

In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels.

Methods

SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed.

Results

Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O.

Conclusions

The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
  相似文献   

20.
Patch-clamp studies carried out on the tonoplast of the moss Physcomitrella patens point to existence of two types of cation-selective ion channels: slowly activated (SV channels), and fast-activated potassium-selective channels. Slowly and instantaneously saturating currents were observed in the whole-vacuole recordings made in the symmetrical KCl concentration and in the presence of Ca2+ on both sides of the tonoplast. The reversal potential obtained at the KCl gradient (10 mM on the cytoplasmic side and 100 mM in the vacuole lumen) was close to the reversal potential for K+ (E K), indicating K+ selectivity. Recordings in cytoplasm-out patches revealed two distinct channel populations differing in conductance: 91.6 ± 0.9 pS (n = 14) at ?80 mV and 44.7 ± 0.7 pS (n = 14) at +80 mV. When NaCl was used instead of KCl, clear slow vacuolar SV channel activity was observed both in whole-vacuole and cytoplasm-out membrane patches. There were no instantaneously saturating currents, which points to impermeability of fast-activated potassium channels to Na+ and K+ selectivity. In the symmetrical concentration of NaCl on both sides of the tonoplast, currents have been measured exclusively at positive voltages indicating Na+ influx to the vacuole. Recordings with different concentrations of cytoplasmic and vacuolar Ca2+ revealed that SV channel activity was regulated by both cytoplasmic and vacuolar calcium. While cytoplasmic Ca2+ activated SV channels, vacuolar Ca2+ inhibited their activity. Dependence of fast-activated potassium channels on the cytoplasmic Ca2+ was also determined. These channels were active even without Ca2+ (2 mM EGTA in the cytosol and the vacuole lumen), although their open probability significantly increased at 0.1 μM Ca2+ on the cytoplasmic side. Apart from monovalent cations (K+ and Na+), SV channels were permeable to divalent cations (Ca2+ and Mg2+). Both monovalent and divalent cations passed through the channels in the same direction—from the cytoplasm to the vacuole. The identity of the vacuolar ion channels in Physcomitrella and ion channels already characterised in different plants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号