首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The brain architecture in four species of tapeworms from the order Trypanorhyncha has been studied. In all species, the brain consists of paired anterior and lateral lobes, and an unpaired central lobe. The anterior lobes connect by dorsal and ventral semicircular commissures; the central and lateral lobes connect by a median and an X-shaped crisscross commissure. In the center of the brain, five well-developed compact neuropils are present. The brain occupies a medial position in the scolex pars bothrialis. The ventral excretory vessels are situated outside the lateral lobes of the brain; the dorsal excretory vessels are located inside the brain and dorsal to the median commissure. The brain gives rize four anterior proboscis nerves and four posterior bulbar nerves with myelinated giant axons (GAs). The cell bodies of the GAs are located within the X-commissure and in the bulbar nerves. Highly developed serotonergic neuropils are present in the anterior and lateral lobes; numerous 5-HT neurons are found in the brain lobes including the central unpaired lobe. The X-cross commissure consists of the α-tub-immunoreactive and 5-HT-IR neurites. Eight ultrastructural types of neurons were found in the brain of the three species investigated. In addition, different types of synapses were present in the neuropils. Glial cells ensheath the brain lobes, the neuropils, the GAs, and the bulbar nerves. Glia cell processes form complex branching patterns of thin cytoplasmic sheets sandwiched between adjacent neural processes and filling the space between neurons. Multilayer myelin-like envelopes and a mesaxon-like structure have been found in Trypanorhyncha nervous system. We compared the brain architecture of Trypanorhyncha with that of an early basal cestode taxon, that is, Diphyllobothriidea, and present a hypothesis about the homology of the anterior brain lobes in order Trypanorhyncha; and the lateral lobes and median commissure are homologous brain structures within Eucestoda.  相似文献   

2.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were assayed in samples dissected from sagittal sections through rat superior colliculus. The magnitude of ChAT activity was about half to equal that found in rat whole brain in all layers except stratum griseum intermediale, where the average activity was higher than whole brain. AChE activity was three to four times that found in rat whole brain in superficial layers and about the same as average brain in deeper layers, except in the statum griseum intermediale, where the average activity was about twice whole brain. Rostral-caudal gradients in both ChAT and AChE activities occurred in stratum griseum intermediale, with activities in the caudal region of some animals as high as four times those in the rostral. ChAT activity in samples associated with locations of patches or spots of AChE staining product in stratum griseum intermediale was significantly higher than in samples from "nonpatch" regions. Results are discussed relative to inputs into the colliculus, whose terminations may correlate in location with the distributions of the enzyme activities.  相似文献   

3.
Choline acetyltransferase (ChAT, acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6), involved in the learning and memory processes is responsible for the synthesis of acetylcholine. There are many discrepancies in literature concerning ChAT activity during brain aging and the role of amyloid beta peptides in modulation of this enzyme. The aim of the study was to investigate the mechanism of ChAT regulation and age-related alteration of ChAT activity in different parts of the brain. Moreover the effect of A peptides on ChAT activity in adult and aged brain was investigated. The enzyme activity was determined in the brain cortex, hippocampus and striatum in adult (4-months-old), adult-aged (14-months-old) and aged (24-months-old) animals. The highest ChAT activity was observed in the striatum. We found that inhibitors of protein kinase C, A, G and phosphatase A2 have no effect on ChAT activity and that this enzyme is not dependent on calcium ions. About 70% of the total ChAT activity is present in the cytosol. Arachidonic acid significantly inhibited cytosolic form of this enzyme. In the brain cortex and striatum from aged brain ChAT activity is inhibited by 50% and 37%, respectively. The aggregated form of A 25-35 decreased significantly ChAT activity only in the aged striatum and exerted inhibitory effect on this enzyme in adult, however, statistically insignificant. ChAT activity in the striatum was diminished after exposure to 1 mM H2O2. The results from our study indicate that aging processes play a major role in inhibition of ChAT activity and that this enzyme in striatum is selectively sensitive for amyloid beta peptides.  相似文献   

4.
To elucidate the relationships among the brain regions belonging to the limbic system, the authors investigated the relationships among the hippocampus, dentate gyrus, mammillary body, and fornix, using the anterior commissure as a control, from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the hippocampi, dentate gyri, mammillary bodies, fornices, and anterior commissures were resected from identical cerebra of the subjects. The subjects consisted of 23 men and 23 women, ranging in age from 70 to 101 years (average age = 83.5 ± 7.5 years). After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure. It was found that there were extremely or very significant direct correlations among all of the five brain regions of the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure in the P content. Likewise, with regard to the Fe content, there were significant direct correlations among the four brain regions belonging to the limbic system, except for the anterior commissure. In both the Ca and Zn contents, there were extremely or very significant direct correlations among the hippocampus, dentate gyrus, and mammillary body of the gray matter.  相似文献   

5.
In an attempt to discern effects of sex hormones on the development of neurotransmitter systems in the rat brain, choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) have been measured at postnatal days 8, 12, 25, and 60 in five regions (amygdala, anterior hypothalamus, hippocampus, olfactory bulbs, and cerebral cortex) of the brains of normal male, normal female, and neonatally androgen-treated female rats. Essentially no associations between sex or of neonatal androgenization on either enzyme were found. The data, however, provide new information on the relative rates of development of ChAT and GAD in five regions of the rat brain which supplement the limited information already available in the literature. ChAT activity was highest in amygdala and hypothalamus, but developed most rapidly in hippocampus and cerebral cortex. The relative activities and patterns of development of GAD activity were similar to those of ChAT.  相似文献   

6.
Activity of cholinacetyltransferase (ChAT. EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) was monitored during occlusion of arteria cerebri media dx. (MCA) in five areas of the brain cortex, in nucleus caudatus and in the thalamus of the ipsilateral and contralateral hemisphere. After 1 hour of MCA occlusion ChAT and AChE activity was reduced in the ischemised region of the hemisphere, i. e. in gyrus ectosylvius anterior and gyrus sylvius anterior, whereas after 4 hours of occlusion the differences were not significant. In nc. caudatus and thalamus the activity of enzymes during ischemia did not change much.  相似文献   

7.
Developmental increases of the activity of choline acetyltransferase (ChAT) were examined in the brains of fetuses and offspring from parent rats continuously exposed to a 500 mG, 60 Hz circularly polarized (CP) magnetic field (MF) prior to pregnancy, and further, during pregnancy and lactation. In developing rats between 12 days and 20 days of embryogenesis that were housed in a control unit, i.e., nonexposed to MF, the specific activity of ChAT in whole brain specimens increased from 2.4% to 6.9% of adult activity, while specific activity of ChAT in rat brain specimens between 12 days of embryogenesis and 10 days of postpartum increased from 2.4% to 21.6% of adult activity. On the other hand, the specific activity of ChAT in whole brain specimens from rats under housed MF exposure conditions was found to increase from 2.6% to 6.7% of adult activity between 12 days and 20 days of embryogenesis and from 2.6% to 21.6% of adult activity between 12 days of embryogenesis and 10 days postpartum. Furthermore, the effect of the same test magnetic environment on the specific activity of ChAT in the brains of parental rats was examined in order to determine whether magnetic field exposure of parental rats might reflect onto the development of fetal brain. It was observed that continuous exposure of parental rats to a 500 mG, 60 Hz CP MF did not show any significant changes in the specific activity of ChAT in the septodiagonal band complex, dorsal and ventral hippocampus, striatum, and frontoparietal cerebral cortex, as compared with the same brain regions of control subjects. As far as the development of cholinergic neural circuits was concerned, these test magnetic environments did not interfere in their development and it suggested that parental-fetal intercommunication might provide relatively stable states for neural development, even under these test magnetic environments. © 1993 Wiley-Liss. Inc.  相似文献   

8.
Three fractions (one soluble and two membrane-bound) of choline acetyltransferase (ChAT) isolated from a nerve ending fraction of mouse forebrain, which have previously been reported to differ in several biochemical and physical aspects, were also found to differ in their rates of postnatal development. At 2 days of age, the activity in all three fractions was very low. Sodium phosphate buffer-soluble (cytoplasmic) ChAT activity increased significantly by 8 days of age, whereas the ChAT activity of the two membrane-bound fractions (NaCl- and Triton-soluble) did not increase until 13 days of age. These results suggested that the differences observed between the three fractions of ChAT prepared from mouse brain are not solely artifacts of the isolation procedure.  相似文献   

9.
Choline acetyltransferase (ChAT) activity was estimated in brain cortex capillaries isolated from 3-, 12-, 18-, and 24-month-old rats. Maximum enzymatic activity was found at 12 months (55 +/- 0.3 pmol X mg-1 protein X min-1; mean +/- SEM) and then it decreased to reach a minimum at 24 months (34 +/- 3.1 pmol X mg-1 protein X min-1). A less marked decrease of enzymatic activity was also found in cortex homogenate and in a synaptosomal fraction obtained from the same groups of rats. Loss of ChAT of brain capillaries with aging could be related to a general phenomenon of cortical cholinergic deficit in that condition.  相似文献   

10.
Activation of Choline Acetyltransferase by Vasoactive Intestinal Peptide   总被引:3,自引:3,他引:0  
Addition of vasoactive intestinal peptide (VIP) to brain homogenates increased the activity of choline acetyltransferase (ChAT) but not that of acetylcholinesterase or glucose-6-phosphate dehydrogenase. Activity of ChAT was increased in the anterior hypothalamus and in the dorsal and ventral hippocampus, but not in the parietal cortex or posterior hypothalamus. Increased activity occurred rapidly after VIP addition to homogenates and was maximal at 10(-7)M concentration. Kinetic analysis indicates that the Vmax of the enzyme is increased and the Km for choline, but not acetyl-coenzyme A, is decreased in the presence of VIP. Results support a possible VIP-cholinergic interaction in the CNS.  相似文献   

11.
Brain glutathione system (Glut-Syst) exhibits functional changes with age as well as during neurodegenerative diseases. After NGF treatment, cognitive functions and Glut-Syst activity are favorably modified in aged rats. also, the environmental enrichment (E-E) activates molecular mechanisms linked to cognition and sensorimotor coordination. We evaluate the functional repercussion of the combination of both factors. Old cognitively impaired rats received intracerebroventricular infusion of NGF (ICV, 22 mg/mL) or intraparenquimal (IP-nbM, 5.5 mg/mL) during 14 days using ALZET osmotic minipumps. Simultaneously, these animals received a passive training in an E-E during 4 weeks. A control group received training + saline infusion. Animals were assessed in the water maze task, avoidance passive test, open field test and transverse bridges test. At the end of the week 4, glutathione content and Choline Acetyltransferase (ChAT) activity were measured in brain areas of interest. E-E or NGF treatments, particularly the IP route, improve the rat's overall behavioral performance but a synergic effect was observed when NGF and E-E were applied simultaneously. A trend to hyperactivity was detected in the ICV group. Glutathione content and ChAT activity exhibited significant changes according to the group and brain area. It's well known that activity/levels of antioxidant enzymes and ChAT activity are related to age, brain region and neurotrophins activity. Results point out the possibilities of neurotrophic therapy if an adequate route of delivery is used as well as the benefit of combining a neurorehabilitation program on both, behavioural and protection from oxidative stress.  相似文献   

12.
Brain glutathione system (Glut‐Syst) exhibits functional changes with age as well as during neurodegenerative diseases. After NGF treatment, cognitive functions and Glut‐Syst activity are favorably modified in aged rats. also, the environmental enrichment (E‐E) activates molecular mechanisms linked to cognition and sensorimotor coordination. We evaluate the functional repercussion of the combination of both factors. Old cognitively impaired rats received intracerebroventricular infusion of NGF (ICV, 22 mg/mL) or intraparenquimal (IP‐nbM, 5.5 mg/mL) during 14 days using ALZET osmotic minipumps. Simultaneously, these animals received a passive training in an E‐E during 4 weeks. A control group received training + saline infusion. Animals were assessed in the water maze task, avoidance passive test, open field test and transverse bridges test. At the end of the week 4, glutathione content and Choline Acetyltransferase (ChAT) activity were measured in brain areas of interest. E‐E or NGF treatments, particularly the IP route, improve the rat's overall behavioral performance but a synergic effect was observed when NGF and E‐E were applied simultaneously. A trend to hyperactivity was detected in the ICV group. Glutathione content and ChAT activity exhibited significant changes according to the group and brain area. It's well known that activity/levels of antioxidant enzymes and ChAT activity are related to age, brain region and neurotrophins activity. Results point out the possibilities of neurotrophic therapy if an adequate route of delivery is used as well as the benefit of combining a neurorehabilitation program on both, behavioural and protection from oxidative stress.  相似文献   

13.
Acetyl-coenzyme A: choline O-acetyltransferase (EC 2.3.1.6) (ChAT) enzyme activity was measured in the nucleus basalis and other microscopically identified brain areas at various times after unilateral cortical lesions were made in the rat. Initially, a significant decrease in ChAT activity was detected in the nucleus basalis ipsilateral to the lesion. However, after 120 days ChAT activity had apparently recovered, as levels of the enzyme at that time were not significantly different from control values. No changes in ChAT activity could be detected in any of the other brain areas similarly studied. The significance of these findings and their relationship to the morphological changes seen in neurones of the nucleus basalis after cortical lesions are discussed.  相似文献   

14.
Brain microvessels form a tight blood-tissue permeability barrier and express high levels of specific enzymes, including gamma-glutamyl transpeptidase (GGTP). This differentiation is thought to be induced by perivascular astrocytes. By using histochemical methods, we found that the percentage of GGTP-positive vessels varied considerably in different areas of rat brain. Enzyme activity was not found in the pineal gland or the median eminence, where the blood-brain barrier is not expressed. In areas where the blood-brain barrier is expressed, the percentage of GGTP-positive vessels varied from 8% in the optic nerve to 100% in the anterior commissure. The neocortex showed a lower percentage of GGTP-positive vessels (2-15%) than anterior olfactory nucleus (42%), subiculum (70%), hippocampus (48%), and striatum (50-58%). Alkaline phosphatase, another brain microvessel-enriched enzyme, did not show these marked regional differences. The morphometric histochemical results were verified by enzymatic assays in homogenates of different regions from rat and bovine brain and in microvessel preparations of bovine putamen and neocortex. During the postnatal development of rat brain, the difference between neocortex and striatum appeared after day 20. The regional heterogeneity of brain microvessels may be caused by astrocytic heterogeneity and reflect regional heterogeneity in microvascular function.  相似文献   

15.
Monoclonal antibodies (mAbs) to chick choline acetyltransferase (ChAT) were obtained from mouse-hybridoma cultures after immunization with partially purified enzyme isolated from optic lobes. Antibodies that bound active enzyme were detected in 11 hybridoma cultures. The mAbs showed cross-reactivity to ChAT from quail and beef but not to ChAT from several other species. An affinity column prepared with one of the mAbs was used to purify ChAT to apparent homogeneity. Polyclonal antiserum to mAb affinity-purified ChAT was produced in a rabbit. This antiserum inhibited chick ChAT activity and quantitatively precipitated ChAT activity from solution. On immunoblots, the antiserum stained ChAT and two other proteins. After preadsorption of the antiserum with effluent from the mAb affinity column, the antiserum became monospecific for ChAT. This antiserum was useful for immunocytochemical localization of ChAT, it selectively stained neuronal cell bodies in chick spinal cord and rat brain at locations known to contain cholinergic neurons.  相似文献   

16.
Three forms of acetyl coenzyme A: choline-O-acetyltransferase (EC 2.3.1.6, ChAT) have been isolated from mouse and rat forebrain synaptosomes with a 100 mM sodium phosphate (NaP) buffer of pH 7.4, a high-salt solution (500 mM NaCl), and a 2% Triton DN-65 solution, respectively. The Triton-solubilized form of ChAT differed from the other two forms in its capacity to acetylate homocholine, its pH profile, and its sensitivity to denaturation. NaCl-solubilized ChAT could be distinguished from the other two forms with respect to pH profile, sensitivity to inhibition by 4-(1-naphthylvinyl) pyridine (in the presence of Triton), and apparent Km value for choline acetylation. The caudate and putamen of rat brain contained the highest amount of ChAT activity, based on tissue wet weight, and the cerebellum contained the least of the brain regions examined; only the cerebellum had more membrane-bound than soluble ChAT. Septal lesion reduced ChAT activity in the NaP- and Triton-solubilized fractions prepared from hippocampus by 68% and 64%, respectively, whereas it reduced the activity of the NaCl-solubilized fraction by only 21%. These results suggest that three different forms of ChAT may exist in both mouse and rat brain.  相似文献   

17.
The relationship between soluble and membrane choline acetyltransferase (ChAT) was studied. Differential solubilization of rat and human brain yielded ChAT in the soluble and membrane fractions. The addition of 1% Triton X-100 to membrane fractions resulted in a release of ChAT. A comparable release of lactate dehydrogenase was also observed. The Triton released ChAT and soluble ChAT from rat and human brain were efficiently purified by immuno-affinity chromatography. A single molecular weight of 68,000 was observed for both forms of rat and human brain ChAT. Epitope maps produced from both forms of human brain ChAT were identical. It is concluded that Triton release ChAT is identical to soluble ChAT and simply represents occluded soluble ChAT.  相似文献   

18.
Acoel worms are simple, often microscopic animals with direct development, a multiciliated epidermis, a statocyst, and a digestive parenchyma instead of a gut epithelium. Morphological characters of acoels have been notoriously difficult to interpret due to their relative scarcity. The nervous system is one of the most accessible and widely used comparative features in acoels, which have a so‐called commissural brain without capsule and several major longitudinal neurite bundles. Here, we use the selective binding properties of a neuropeptide antibody raised in echinoderms (SALMFamide2, or S2), and a commercial antibody against serotonin (5‐HT) to provide additional characters of the acoel nervous system. We have prepared whole‐mount immunofluorescent stainings of three acoel species: Symsagittifera psammophila (Convolutidae), Aphanostoma pisae, and the model acoel Isodiametra pulchra (both Isodiametridae). The commissural brain of all three acoels is delimited anteriorly by the ventral anterior commissure, and posteriorly by the dorsal posterior commissure. The dorsal anterior commissure is situated between the ventral anterior commissure and the dorsal posterior commissure, while the statocyst lies between dorsal anterior and dorsal posterior commissure. S2 and serotonin do not co‐localise, and they follow similar patterns to each other within an animal. In particular, S2, but not 5‐HT, stains a prominent commissure posterior to the main (dorsal) posterior commissure. We have for the first time observed a closed posterior loop of the main neurite bundles in S. psammophila for both the amidergic and the serotonergic nervous system. In I. pulchra, the lateral neurite bundles also form a posterior loop in our serotonergic nervous system stainings.  相似文献   

19.
A rapid and efficient immunoaffinity purification procedure has been developed for human placental choline acetyltransferase (ChAT). Using this procedure, human placental ChAT was purified to homogeneity with high recovery of enzyme activity (50-60%). Purified ChAT was used to raise a monospecific anti-human ChAT polyclonal antibody in rabbits. A comparison of the physical properties of ChAT was made between the enzymes purified from human brain and human placenta. Only one form of the enzyme exists in either tissue, having identical molecular weights of 68,000 and a single apparent pI of 8.1. A more detailed comparison of the two enzymes using peptide mapping and epitope mapping indicates identity between the brain and placental enzymes.  相似文献   

20.
Choline acetyltransferase (ChAT) catalyzes the reaction between choline and acetylcoenzyme A (AcCoA) to form acetylcholine (ACh) in nerve terminals. ACh metabolism has implications in numerous aspects of physiology and varied disease states, such as Alzheimer's disease. Therefore a specific, sensitive, and reliable method for detecting ChAT enzyme activity is of great utility in a number of situations. Using an existing radionuclide-based enzyme activity assay, we have observed detectable ChAT signals from non-cholinergic cells, suggesting a contaminant in the assay producing an artifactual signal. Previous reports have suggested that L-acetylcarnitine (LAC) contaminates many assays of ChAT activity, because of difficulties in separating LAC from ACh by organic extraction. To determine the source of this hypothesized artifact and to rectify the problem, we have developed a paper chromatography-based assay for the detection of acetylcholine and other contaminating reaction products of this assay, including LAC. Our first goal was to develop a simple and economical method for resolving and verifying the identities of various reaction products or contaminants that could be performed in most laboratories without specialized equipment. Our second goal was to apply this separation method in postmortem human brain tissue samples. Our assay successfully detected several contaminants, especially in assays using brain tissue, and allowed the separation of the intended ACh product from these contaminants. We further demonstrate that this assay can be used to measure carnitine acetyltransferase (CrAT) activity in the same samples, and assays comparing ChAT and CrAT show that CrAT is highly active in neuronal tissues and in neuronal cell cultures relative to ChAT. Thus, the simple chromatography-based assay we describe allows the measurement of specific reaction products separated from contaminants using commonly available and inexpensive materials. Further, we show that ChAT activity is significantly reduced in brain extracts from Alzheimer's disease compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号