首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The involvement of the cytoskeleton in symbiotic interactions such as arbuscular mycorrhizas has received little attention. In this paper, we examine the organization of actin in tobacco mycorrhizal roots and compare actin and tubulin patterns within arbuscule-containing cells.
Our results show drastic reorganization of microfilaments and microtubules upon fungal infection and how those new cytoskeletal patterns relate to the host cytoplasm rearrangement and the intracellular fungal structures. Whereas in uninfected cells a network of cortical and perinuclear actin filaments was observed, in infected cells actin filaments closely follow the fungal branches and envelop the whole arbuscule in a dense coating network. Microtubules are less closely connected with the fungus surface. They run across the whole arbuscule mass, linking branches to each other and to the host cell cortex and nucleus.
These major differences between the two cytoskeletal components are used to advance some suggestions concerning their contribution to structural functions in the plant–fungus interactions during the mycorrhizal symbiosis.  相似文献   

2.
 This paper reports the changes that occur in the microtubule cytoskeleton of cells of orchid protocorms during infection by a compatible mycorrhizal fungus. In cells of protocorms uninfected by a mycorrhizal fungus, microtubules occurred in regular arrays. In contrast, the cells of orchid protocorms with established mycorrhizas appeared to contain irregularly arranged microtubules. Double labelling with anti-β-tubulin and rhodamine-labelled wheat-germ agglutinin demonstrated that these irregularly arranged microtubules occurred only inside fungal hyphae and that microtubules were absent from host cells containing mycorrhizal fungi. Microtubule depolymerisation was shown to occur at the early stages of fungal infection. There was neither loss of nor obvious organisational change in microtubules in cells adjacent to others containing fungal hyphae. Electron microscopy confirmed the presence of an interfacial matrix between the host plasma membrane and the hyphal wall. The loss of microtubules from cells infected by mycorrhizal fungi suggests that an intact host microtubule cytoskeleton is not necessary for the formation of the interfacial matrix in mycorrhizas of orchid protocorms. Accepted: 9 November 1995  相似文献   

3.
The role of the Lotus japonicus LjSym4 gene during the symbiotic interaction with Mesorhizobium loti and arbuscular mycorrhizal (AM) fungi was analyzed with two mutant alleles conferring phenotypes of different strength. Ljsym4-1 and Ljsym4-2 mutants do not form nodules with M. loti. Normal root hair curling and infection threads are not observed, while a nodC-dependent deformation of root hair tips indicates that nodulation factors are still perceived by Ljsym4 mutants. Fungal infection attempts on the mutants generally abort within the epidermis, but Ljsym4-1 mutants allow rare, successful, infection events, leading to delayed arbuscule formation. On roots of mutants homozygous for the Ljsym4-2 allele, arbuscule formation was never observed upon inoculation with either of the two AM fungi, Glomus intraradices or Gigaspora margarita. The strategy of epidermal penetration by G. margarita was identical for Ljsym4-2 mutants and the parental line, with appressoria, hyphae growing between two epidermal cells, penetration of epidermal cells through their anticlinal wall. These observations define a novel, genetically controlled step in AM colonization. Although rhizobia penetrate the tip of root hairs and AM fungi access an entry site near the base of epidermal cells, the LjSym4 gene is necessary for the appropriate response of this cell type to both microsymbionts. We propose that LjSym4 is required for the initiation or coordinated expression of the host plant cell's accommodation program, allowing the passage of both microsymbionts through the epidermis layer.  相似文献   

4.
Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry.  相似文献   

5.
The cytoskeleton in plant cells is a dynamic structure that can rapidly respond to extracellular stimuli. Alteration of the organization of microtubules and actin microfilaments was examined in mesophyll cells of flax, Linum usitatissimum L., during attempted infection by the flax rust fungus, Melampsora lini (Ehrenb.) Lev. Flax leaves that had been inoculated with either a compatible (yielding a susceptible reaction) or an incompatible (yielding a resistant reaction) strain of M. lini were embedded in butyl-methylmethacrylate resin; sections of this material were immunofluorescently labelled with anti-tubulin or anti-actin and examined using confocal laser scanning microscopy. In uninfected leaves, microtubules in the mesophyll cells formed a transverse array in the cell cortex. Microfilaments radiated through the cytoplasm from the nucleus. In an incompatible interaction, microtubules and microfilaments were extensively reorganized in mesophyll cells that were in contact with fungal infection hyphae or haustorial mother cells before penetration of the cell by the infection peg. After the initiation of haustorium development, microtubules disappeared from the infected cells, and growth of the haustoria ceased. In an incompatible interaction, hypersensitive cell death occurred in more than 70% of infected cells but occurred in less than 20% of cells in compatible interactions. After the infected cell had undergone hypersensitive cell death, the cytoskeleton in neighbouring cells became focused on the walls shared with the necrotic cell. In compatible interactions, reorganization of the cytoskeleton was either not observed at all or was observed much less frequently up to 48 h after inoculation.Abbreviations FITC fluorescein isothiocyanate - WGA wheatgerm agglutinin We thank Dr. G.J. Lawrence for providing valuable discussions and materials.  相似文献   

6.
While it is now recognised that transport within the endomembrane system may occur via membranous tubules, spatial regulation of this process is poorly understood. We have investigated the role of the cytoskeleton in regulating the motility and morphology of the motile vacuole system in hyphae of the fungus Pisolithus tinctorius by studying (1) the effects of anti-microtubule (oryzalin, nocodazole) and anti-actin drugs (cytochalasins, latrunculin) on vacuolar activity, monitored by fluorescence microscopy of living cells; and (2) the ultrastructural relationship of microtubules, actin microfilaments, and vacuoles in hyphae prepared by rapid-freezing and freeze-substitution. Anti-microtubule drugs reduced the tubular component of the vacuole system in a dose-dependent and reversible manner, the extent of which correlated strongly with the degree of disruption of the microtubule network (monitored by immunofluorescence microscopy). The highest doses of anti-microtubule drugs completely eliminated tubular vacuoles, and only spherical vacuoles were observed. In contrast, anti-actin drugs did not reduce the frequency of tubular vacuoles or the motility of these vacuoles, even though immunofluorescence microscopy confirmed perturbation of microfilament organisation. Electron microscopy showed that vacuoles were always accompanied by microtubules. Bundles of microtubules were found running in parallel along the length of tubular vacuoles and individual microtubules were often within one microtubule diameter of a vacuole membrane. Our results strongly support a role for microtubules, but not actin microfilaments, in the spatial regulation of vacuole motility and morphology in fungal hyphae.  相似文献   

7.
Using immunofluorescence techniques, we have examined the microtubules and microfilaments in colonies of terminally differentiating human keratinocytes in tissue culture. The undifferentiated keratinocytes contained numerous microtubules, which radiated from a centrosomal organization center (MTOC). Differentiating keratinocytes, which leave the basal layer and begin to synthesize involucrin, displayed an altered cytoskeleton. Thick mats and coils of microtubules formed throughout the cytoplasm of the differentiated squames, and microfilaments were no longer visible after staining with phalloidin. Instead, only scattered stipples of phalloidin-stained material were observed. The results suggest that the terminal differentiation of epidermal cells involves a reorganization not only of the keratin filaments but of the entire cytoskeleton.  相似文献   

8.
Summary Post-mitotic epidermal cells of barley leaves were found to contain, in addition to cortical microtubules (CMTs), distinct arrays of endoplasmic microtubules (EMTs). These encircle nuclei and continuously merge into the CMT arrays that underly the plasmalemma. Detailed three-dimensional reconstruction of both types of MTs during fungal infection showed that profound and very rapid MT rearrangements occurred especially in the case of incompatible (resistant) barley-powdery mildew genotype combination. The most early MT responses, followed by their subsequent complete disintegration, were recorded around nuclei. These events might be relevant for the induction of such nuclear processes as onset of DNA synthesis and nuclear chromatin condensation. Observed pattern of early infection events, as well as less prominent responses in the case of compatible (susceptible) barley-powdery mildew genotype combination, both findings suggest that rapid reorganization of the MT cytoskeleton could be involved in recognition of the fungus by host cells and in the initiation of resistance responses in barley leaves. We hypothesize that the integrity and dynamics of the MT cytoskeleton, especially of its perinuclear part, might participate in control mechanisms involved in activation of resistance genes.Abbreviations CMTs cortical microtubules - EMTs endoplasmic microtubules - MT microtubules - PI propidium iodide - SC sensitive combination - RC resistant combination  相似文献   

9.
Q. -Y. Wang  P. Nick 《Protoplasma》1998,204(1-2):22-33
Summary The rice mutantYin-Yang has been selected during a screen for resistance to cytoskeletal drugs and is characterized by alterations in epidermal cell length and a precocious onset of gravitropism. The elongation response of coleoptile segments to auxin does not reveal changes of auxin sensitivity inYin-Yang. However, in contrast to the wild type, cell elongation inYin-Yang is highly sensitive to the actin-polymerisation blocker cytochalasin D. This increased sensitivity to cytochalasin D requires optimal concentrations of auxin to become manifest. The auxin response of actin microfilaments in epidermal cells differs between wild type and mutant. In the wild type, the longitudinal microfilament bundles become loosened in response to auxin. In the mutant, these bundles disintegrate partially and are replaced by a network of short filaments surrounding the nucleus. Several aspects of the mutant phenotype can be mimicked in the wild type by treatment with cytochalasin D. The mutant phenotype is discussed in terms of signal-dependent changes of actin dynamics and the putative role of actin during cell elongation.Abbreviations CD cytochalasin D - EPC ethyl-N-phenylcarbamate  相似文献   

10.
The root epidermal bulger 1 ( reb1) mutant of Arabidopsis thaliana (L.) Heynh. is characterized by a reduced elongation rate of the primary root and by the bulging of many, but not all, root epidermal cells. In this study, we investigated cell wall structure of root epidermal cells in reb1-1 by using serial sectioning, and light and electron microscopy in combination with immuno-cytochemistry and polysaccharide staining. We found that: (i) Cell bulging in the mutant was initiated in the zone of elongation of the root, and occurred exclusively in trichoblasts. (ii) reb1-1 and wild-type root cells stained identically with anti-pectin antibodies, such as JIM5. In contrast, the anti-arabinogalactan-protein antibodies, JIM14 and LM2, stained all epidermal cells in the wild type and trichoblasts preferentially, but in reb1-1 they stained the atrichoblasts only. (iii) Compared to the wild type, mutant trichoblasts had a thinner outer epidermal cell wall, which presented abnormal periodic acid-thio carbohydrazide silver proteinate (PATAg) staining. In addition, we investigated the organization of cortical microtubules in a reb1-1 mutant line expressing a green-fluorescent protein fused to a microtubule-binding domain from human microtubule-associated protein 4. Microtubules in the swollen trichoblasts of reb1-1 were either disordered or absent entirely. Together our findings indicate that the reb1-1 mutation results in an abnormal trichoblast cell wall, and suggest that cell surface arabinogalactan-proteins are required for anisotropic expansion and for orienting cortical microtubules.  相似文献   

11.
Plant basal resistance is activated by virulent pathogens in susceptible host plants. A Colletotrichum orbiculare fungal mutant defective in the SSD1 gene, which regulates cell wall composition, is restricted by host basal resistance responses. Here, we identified the Nicotiana benthamiana signaling pathway involved in basal resistance by silencing the defense-related genes required for restricting the growth of the C. orbiculare mutant. Only silencing of MAP Kinase Kinase2 or of both Salicylic Acid Induced Protein Kinase (SIPK) and Wound Induced Protein Kinase (WIPK), two mitogen-activated protein (MAP) kinases, allowed the mutant to infect and produce necrotic lesions similar to those of the wild type on inoculated leaves. The fungal mutant penetrated host cells to produce infection hyphae at a higher frequency in SIPK WIPK-silenced plants than in nonsilenced plants, without inducing host cellular defense responses. Immunocomplex kinase assays revealed that SIPK and WIPK were more active in leaves inoculated with mutant fungus than with the wild type, suggesting that induced resistance correlates with MAP kinase activity. Infiltration of heat-inactivated mutant conidia induced both SIPK and WIPK more strongly than did those of the wild type, while conidial exudates of the wild type did not suppress MAP kinase induction by mutant conidia. Therefore, activation of a specific MAP kinase pathway by fungal cell surface components determines the effective level of basal plant resistance.  相似文献   

12.
Formins have long been known to regulate microfilaments but have also recently been shown to associate with microtubules. In this study, Arabidopsis thaliana FORMIN14 (AFH14), a type II formin, was found to regulate both microtubule and microfilament arrays. AFH14 expressed in BY-2 cells was shown to decorate preprophase bands, spindles, and phragmoplasts and to induce coalignment of microtubules with microfilaments. These effects perturbed the process of cell division. Localization of AFH14 to microtubule-based structures was confirmed in Arabidopsis suspension cells. Knockdown of AFH14 in mitotic cells altered interactions between microtubules and microfilaments, resulting in the formation of an abnormal mitotic apparatus. In Arabidopsis afh14 T-DNA insertion mutants, microtubule arrays displayed abnormalities during the meiosis-associated process of microspore formation, which corresponded to altered phenotypes during tetrad formation. In vitro biochemical experiments showed that AFH14 bound directly to either microtubules or microfilaments and that the FH2 domain was essential for cytoskeleton binding and bundling. However, in the presence of both microtubules and microfilaments, AFH14 promoted interactions between microtubules and microfilaments. These results demonstrate that AFH14 is a unique plant formin that functions as a linking protein between microtubules and microfilaments and thus plays important roles in the process of plant cell division.  相似文献   

13.
Structural changes of the cytoskeleton of the frog urinary bladder granular cells were examined during low and high water permeability of the epithelium. A tight connection of the microfilaments and microtubules with vacuolar membranes and a great increase in the number of microtubules during a stimulated water flow was shown using different electron microscopic methods. Two populations of microtubules were discovered, respectively, with different diameter and different rate of stability. It is suggested that the thicker microtubules while interacting with actin microfilaments through associated electron dense globules may fulfil the transport function in the cell.  相似文献   

14.
Endotoxins (lipopolysaccharide, LPS) from Gram-negative bacteria are considered as the agents responsible for the induction of endotoxic shock, producing severe cellular metabolic dishomeostasis. Cytotoxic lesions, as well as functional and metabolic disturbances, occur mainly in the liver, which is one of the target organs and exerts an LPS clearance function. In an attempt to approach the molecular basis of endotoxic shock, and to propose an experimental model, we have focused this study on cytoskeleton (microtubules and microfilaments) alterations induced by different doses of endotoxin in different target liver cells. Microfilaments and microtubules were studied by immunofluorescence and different microscopy techniques (optic fluorescence microscopy and confocal laser scanning microscopy) in order to improve the cytoskeleton study resolution. Parenchymal and sinusoidal cell morphology, severely damaged by the LPS action, is related to a disturbance on the cytoskeletal organisation, even more evident in a particular proliferating rat liver cell culture. The most relevant changes are seen in the microtubule patterns in all liver cells tested, which could be related, depending on cell type, either to a direct LPS action or to [Ca+2]i dishomeostasis as well as free radical and cytokine (IL-1beta and TNF-alpha) production. Due to their features, proliferating rat liver cell cultures are used as a sensitive cell model to understand the effect of LPS on cytoskeleton organisation.  相似文献   

15.
In addition to containing microtubule and microfilament systems, vertebrate epithelial cells contain an elaborate keratin intermediate-filament cytoskeleton. Little is known about its structural organization or function. Using indirect immunofluorescence microscopy with an antikeratin antiserum probe, we found that destabilization of microtubules and microfilaments with cytostatic drugs induces significant alterations in the cytoskeletal organization of keratin filaments in HeLa and fetal mouse epidermal cells. Keratin filament organization was observed to undergo a rapid (1-2 h) transition from a uniform distribution to an open lattice of keratin fibers stabilized by membrane-associated focal centers. Since addition of any one drug alone did not elicit significant organizational change in the keratin cytoskeleton, we suggest that microfilaments and microtubules have a combined role in maintaining the arrangement of keratin in these cells. Vimentin filaments, the only other intermediate-sized filaments found in HeLa cells, did not co-distribute with keratin in untreated or drug-treated cells. These findings offer a new way to approach the study of the dynamics and functional roles of the keratin cytoskeleton in epithelial cells.  相似文献   

16.
During Caenorhabditis elegans development, the process of epidermal elongation converts the bean-shaped embryo into the long thin shape of the larval worm. Epidermal elongation results from changes in the shape of epidermal cells, which in turn result from changes in the epidermal cytoskeleton, the extracellular matrix, and in cell-matrix adhesion junctions. Here, we review the roles of cytoskeletal filament systems in epidermal cell shape change during elongation. Genetic and cell biological analyses have established that all three major cytoskeletal filament systems (actin microfilaments, microtubules, and intermediate filaments (IFs)) play distinct and essential roles in epidermal cell shape change. Recent work has also highlighted the importance of communication between these systems for their integrated function in epidermal elongation. Epidermal cells undergo reciprocal interactions with underlying muscle cells, which regulate the position and function of IF-containing cell-matrix adhesion structures within the epidermis. Elongation thus exemplifies the reciprocal tissue interactions of organogenesis.  相似文献   

17.
Rotavirus infection induces an increase in [Ca2+]cyto, which in turn may affect the distribution of the cytoskeleton proteins in the infected cell. Changes in microfilaments, including the formation of stress fibers, were observed starting at 0.5 h.p.i. using fluorescent phalloidin. Western blot analysis indicated that RhoA is activated between 0.5 and 1 h.p.i. Neither the phosphorylation of RhoA nor the formation of stress fibers were observed in cells infected with virions pre-treated with an anti-VP5* non-neutralizing mAb, suggesting that RhoA activation is stimulated by the interaction of the virus with integrins forming the cell receptor complex. In addition, the structure of the tubulin cytoskeleton was also studied. Alterations of the microtubules were evident starting at 3 h.p.i. and by 7 h.p.i. when microtubules were markedly displaced toward the periphery of the cell cytoplasm. Loading of rotavirus-infected cells with either a Ca2+ chelator (BAPTA) or transfection with siRNAs to silence NSP4, reversed the changes observed in both the microfilaments and microtubules distribution, but not the appearance of stress fibers. These results indicate that alterations in the distribution of actin microfilaments are initiated early during infection by the activation of RhoA, and that latter changes in the Ca2+ homeostasis promoted by NSP4 during infection may be responsible for other alterations in the actin and tubulin cytoskeleton.  相似文献   

18.
This study reports the cytoskeletal organisation within chondrocytes, isolated from the superficial and deep zones of articular cartilage and seeded into agarose constructs. At day 0, marked organisation of actin microfilaments was not observed in cells from both zones. Partial or clearly organised microtubules and vimentin intermediate filaments cytoskeletal components were present, however, in a proportion of cells. Staining for microtubules and vimentin intermediate filaments was less marked after 1 day in culture however than on initial seeding. For all three cytoskeletal components there was a dramatic increase in organisation between days 3 and 14 and, in general, organisation was greater within deep zone cells. Clear organisation for actin microfilaments was characterised by a cortical network and punctate staining around the periphery of the cell, while microtubules and vimentin intermediate filaments formed an extensive fibrous network. Cytoskeletal organisation within chondrocytes in agarose appears, therefore, to be broadly similar to that described in situ. Variations in the organisation of actin microfilaments between chondrocytes cultured in agarose and in monolayer are consistent with a role in phenotypic modulation. Vimentin intermediate filaments and microtubules form a link between the plasma membrane and the nucleus and may play a role in the mechanotransduction process.  相似文献   

19.
We recently reported that AFH14 participated in microtubule and actin filament interaction in cell division, and the AFH14 (FH1FH2) was important to the directly binding activity of microtubules and microfilaments. To preliminarily understand the function and localization of AFH14 in non-dividing cells, we overexpressed FH1FH2-RFP in onion epidermal cells, and found a fluorescence labeled filamentous network. The result of double labeling with different cytoskeleton reporter proteins indicated that FH1FH2-RFP co-localized with cortical microtubules. Treatment of cells expressing FH1FH2-RFP with cytoskeleton disrupting drugs confirms that FH1FH2-RFP binds to microtubules. Moreover, the binding of FH1FH2-RFP to microtubules were revealed to be dynamic by fluorescence recovery after photobleaching (FRAP) experiment. Time-lapse confocal microscopy showed that FH1FH2-RFP could display a dynamics similar to the microtubule dynamic instability. These data suggest that FH1FH2 domain may lead AFH14 function on cortical microtubules in non-dividing cells, and FH1FH2-RFP may be utilized as a microtubule reporter protein in living onion epidermal cells.Key words: cortical microtubule, AFH14, non-dividing cell, microtubule dynamics, FRAP  相似文献   

20.
Colletotrichum graminicola, the causal agent of maize anthracnose, is a hemibiotrophic fungus that initially infects living host cells via primary hyphae surrounded by a membrane. A nonpathogenic mutant disrupted in a gene encoding a component of the signal peptidase complex, and believed to be deficient in protein processing and secretion, regained pathogenicity when it was inoculated onto maize leaf sheaths close to the wild‐type fungus. Evidence is presented suggesting that the wild‐type produces a diffusible factor(s) that induces the localized susceptibility of host cells at the borders of expanding colonies, causing them to become receptive to biotrophic invasion. The induced susceptibility effect is limited to a distance of approximately eight cells from the edge of the wild‐type colony, is dosage dependent and is specific to C. graminicola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号