首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola.  相似文献   

2.
Abstract

Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5′-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6′-R-alkyl (i.e., 6′-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process.  相似文献   

3.
Both enantiomers of 1′,6′-isoneplanocin have been prepared from a common substituted cyclopentane epoxide in 7 steps. Both compounds were subjected to DNA and RNA viral assessments with moderate to high activity found for both towards human cytomegalovirus, measles, Ebola, norovirus, and dengue. The D-like congener also showed vaccinia and HBV effectiveness. In many of the other antiviral assays both compounds showed cytotoxicity making, in some cases, an EC50 determination not possible. The S-adenosylhomocysteine hydrolase inhibitory effects showed the D-like target to be equal that of neplanocin itself and better than 3-deazaneplanocin whereas the L-like analogue was 13 to 30 times less inhibitory than 3-deazaneplanocin and neplanocin, respectively.  相似文献   

4.
The potent antiviral properties of 3-deazaneplanocin, 3-deaza-isoneplanocins (1) and recently discovered l-like carbocyclic nucleosides (2, 3 and 4) prompted us to pursue rationally conceived l-like 3-deazaneplanocin analogues. The synthesis of those analogues including l-like 3-deazaneplanocin (5), l-like 3-bromo-3-deazaneplanocin (6), and l-like 5′-fluoro-5′-deoxy-3-deazaneplanocin (7), was accomplished from a common intermediate, (−)-cyclopentenone (8). Antiviral analysis found 5 and 6 to display favorable activity against the Ebola virus, as expected for 3-deazaadenine carbocyclic nucleosides. Compound 5 also showed activity against arenaviruses, including Pinchinde and Tacaribe.  相似文献   

5.
The naturally occurring adenine based carbocyclic nucleosides aristeromycin and neplanocin A and their 3-deaza analogues have found a prominent place in the search for diverse antiviral activity agent scaffolds because of their ability to inhibit S-adenosylhomocysteine (AdoHcy) hydrolase. Following the lead of these compounds, their 3-deaza-3-fluoroaristeromycin analogues have been synthesized and their effect on S-adenosylhomocysteine hydrolase and RNA and DNA viruses determined.  相似文献   

6.
For a series of adenosine analogues a close correlation (r = 0.986) was found between their antiviral potency (against vesicular stomatitis virus) and their inhibitory effects (Ki/Km) on S-adenosylhomocysteine (AdoHcy) hydrolase; thus, in order of increasing inhibitory potency for both virus replication and AdoHcy hydrolase activity: (S)-9-(2,3-dihydroxypropyl)adenine less than (RS)-3-adenin-9-yl-2-hydroxypropanoic acid (isobutyl ester) less than carbocyclic 3-deazaadenosine less than neplanocin A. Our findings point to AdoHcy hydrolase as the target for the broad-spectrum antiviral activity of these adenosine analogues.  相似文献   

7.
A convenient stereospecific synthesis of 6′-fluoro-3-deazaneplanocin (6) has been accomplished from d-ribose in 15 steps. It is reported to possess significant activity towards Ebola (Zaire, Vero, μM: EC50?<?0.36; CC50 125; SI?>?347) with moderate inhibition of the target enzyme (S-adenosylhomocysteine hydrolase), which did not correlate directly with its anti-Ebola effects. Compound 6, with limited cytotoxicity, also displayed activity against measles, H1N1 and Pichinde.  相似文献   

8.
S-Adenosylhomocysteine hydrolase (AdoHcy hydrolase, E.C. 3.3.1.1) catalyzes the metabolism of S-adenosylhomocysteine (AdoHcy) to adenosine (Ado) and homocysteine (Hcy) in mouse neuroblastoma N2a cells. AdoHcy hydrolase in N2a cells can be inhibited completely by adenosine dialdehyde (Ado dialdehyde) or neplanocin A. The inhibitory effects of Ado dialdehyde (2.5 μM) and neplanocin A (1 μM) on cellular AdoHcy hydrolase were time-dependent, with total enzyme inhibition occurring after 30 min and 15 min of incubation, respectively. The inhibition of AdoHcy hydrolase produced by Ado dialdehyde and neplanocin A persisted for up to 72 h of incubation, and was paralleled by a time-dependent increase in endogenous AdoHcy levels reaching a maximum 4-fold elevation after 8 h of incubation with Ado dialdehyde and an 11-fold increase in the neplanocin A-treated cells. This increase in AdoHcy levels produced a subsequent inhibition of S-adenosylmethionine (AdoMet)-dependent cellular methylations (e.g. protein carboxylmethylation (PCM), lipid methylation). In addition, neplanocin A was metabolically converted to the corresponding AdoMet analog, S-neplanocylmethionine (NepMet), in neuroblastoma N2a cells. NepMet reached maximum levels after 8 h of incubation of the cells with neplanocin A.  相似文献   

9.
Abstract

Crucial to the rational design of inhibitors of S-adenosyl-L-homocysteine (AdoHcy) hydrolase was the elucidation of its mechanism of catalysis by Palmer and Abeles (J. Biol. Chem. 254, 1217–1226, 1979). This mechanism involves an NAD+-dependent oxidation (oxidative activity) of the 3′-hydroxyl group of AdoHcy followed by elimination of homocysteine (Hcy) to form 4′,5′-didehydro-3′-keto-Ado. Addition of water at the 5′-position (hydrolytic activity) of this tightly bound intermediate followed by an NADH-dependent reduction results in the formation of adenosine (Ado). Many inhibitors of this enzyme have been shown to serve as substrates [e.g., 9-(trans-2-trans-3-dihydroxycyclopent-4-en-1-yl)adenine, DHCeA)] for the oxidative activity of AdoHcy hydrolase, affording the 3′-keto-derivative (e.g., 3′-keto-DHCeA), which is tightly bound to the enzyme, and converting the enzyme from its active form (NAD+) to its inactive form (NADH) (Type I mechanism-based inhibitors; Wolfe and Borchardt, J. Med. Chem. 34, 1521–1530, 1991). More recently, substrates [e.g., (E)-5.,6′-didehydro-6′-deoxy-6′-fluorohomoadenosine, EDDFHA] for the hydrolytic activity of AdoHcy hydrolase have been identified by our laboratories. Identification of hydrolytic substrates affords a new strategy for the design of more potent and more specific inhibitors of AdoHcy hydrolase.  相似文献   

10.
ABSTRACT

Synthesis and antiviral activity of several new 8-substituted carbocyclic analogs of D-2′,3′-dideoxyadenosine are described. The new 8-substituted analogs were synthesized via lithiation of carbocyclic 2′,3′-dideoxy adenosine followed by quenching with electrophiles. This methodology allows for a divergent synthesis of a variety of 8-substituted analogs from carbocyclic 2′,3′-dideoxyadenosine in high yields. 8-Methyl and 8-halogenated carbocyclic 2′,3′-dideoxyadenosine analogs showed 6–25 fold more activity against hepatitis B virus than the unsubstituted carbocyclic D-2′,3′-dideoxyadenosine.  相似文献   

11.
Abstract

Novel halovinyl analogues of neplanocin A without 4′-hydroxymethyl group were easily synthesized starting from d-ribose via cyclopentenone 5 as a key intermediate and their inhibitory activity against SAH hydrolase was assayed.  相似文献   

12.
The l-like enantiomer of 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl)-3-deazaadenine (DHCDA) (1), its 3-deaza-3-bromo derivative (3), and the conformational restricted methanocarba (MC) nucleoside analogues (2 and 4) were synthesized. X-ray crystal structures showed the L isomer MC analogue 4 adopts a similar North-like locked conformation as conventional D-MC nucleosides, while the DHCDA analogue 3 preferred south-like conformer. Compounds 1 and 4 showed potent antiviral activity against norovirus, while compound 2 and 3 were less potent or inactive. The conformational behavior of “sugar” puckering (north/south) and nucleobase orientation (syn /anti) may contribute to the antiviral activity differences. For compound 3, antiviral activity was also found against Ebola virus.  相似文献   

13.
Abstract

In expectation of discovering their antiviral activity, acyclic adenosine derivatives 7, 11, 12, and 16 were designed as analogs of neplanocin A (NPA) and L-eritadenine which are strong inhibitors of S-adenosyl-L-homocysteine hydrolase. The 1′,5′-seco-analog of 4′-deoxymethyl-NPA (DHCA) 7 was synthesized by dideoxygenation of 9-(2,3-O-isopropylidene-D-ribityl)adenine (2). Acyclic DHCA analogs 11 and 16 were obtained by Wittig reaction of the aldehyde 3 with Ph3P=CHCO2Et and Ph3P=CHCN, respectively. Hydrolysis of the ester 11 afforded a vinylog of L-eritadenine 12. The synthesized acyclic nucleosides 7, 10, and 11 were evaluated for antiviral activity, however, none of them showed any significant antiviral activity.  相似文献   

14.
Neplanocin A, a cyclopentenyl analog of adenosine, has been reported by S. Yaginuma, N. Muto, M. Tsujino, Y. Sudate, M. Hayashi, and M. Otari (1981) J. Antibiot. 34, 359-366 to exhibit antibacterial activity against Alcaligenes faecalis. Since neplanocin A (NpcA) is a known inhibitor of eukaryotic S-adenosylhomocysteine (AdoHcy) hydrolase (EC 3.3.1.1) (R. T. Borchardt, B. T. Keller, and U. Patel-Thombre (1984) J. Biol. Chem. 259, 4353-4358), the present study was undertaken to determine the effects of this carbocyclic nucleoside on AdoHcy hydrolase isolated from a prokaryotic source (A. faecalis). AdoHcy hydrolase was purified to homogeneity by affinity chromatography on an AdoHcy-agarose matrix from A. faecalis. Neplanocin A inactivated the purified AdoHcy hydrolase in a time- and concentration-dependent manner and the enzyme activity could not be recovered by dialysis. The inactivation of this bacterial enzyme by neplanocin A is accompanied by a reduction of three of the six enzyme-bound NAD+s to NADHs. These results suggest that the prokaryotic enzyme, like the eukaryotic AdoHcy hydrolase, is susceptible to inhibition by neplanocin A. The mechanism of inactivation in both cases appears to be a Kcat mechanism involving the reduction of the enzyme-bound NAD+ to NADH. The fact that total inhibition of the prokaryotic AdoHcy hydrolase by NpcA results in a reduction of only three of the six enzyme-bound NAD+s to NADHs suggests that the enzyme shows half-site reactivity (i.e., only three of the six subunits are catalytically active).  相似文献   

15.
Abstract

The 6′-carboxylic acid derivative of neplanocin A 3 was synthesized from NPA, and was converted to the corresponding methyl ester 4 and amides 5 and 6. These were evaluated for their anti-RNA-virus activities. Of the derivatives synthesized, only 5 was active against RNA viruses within the concentration range of 0.14-4.88 μg/mL. Compounds 3 and 5 showed a potent inhibitory effect on S-adenosylhomocysteine (AdoHcy) hydrolase from rabbit erythrocytes. Although a close correlation between the inhibitory effect of adenosine analogues on AdoHcy hydrolase and their antiviral potency has been demonstrated, 3 did not show any anti-RNA-virus activities.

  相似文献   

16.
17.
Elevated plasma homocysteine (Hcy) levels are an independent risk factor for the onset and progression of Alzheimer’s disease. Reduction of Hcy to normal levels therefore presents a new approach for disease modification. Hcy is produced by the cytosolic enzyme S-adenosylhomocysteine hydrolase (AHCY), which converts S-adenosylhomocysteine (SAH) to Hcy and adenosine. Herein we describe the design and characterization of novel, substrate-based S-adenosylhomocysteine hydrolase inhibitors with low nanomolar potency in vitro and robust activity in vivo.  相似文献   

18.
Biological transmethylation reaction is a key step in the duplication of virus life cycle, in which S-adenosylmethionine plays as the methyl donor. The product of this reactions, S-adenosylhomocysteine (AdoHcy) inhibits the transmethylation process. AdoHcy is hydrolysed to adenosine and L-homocysteine by the action of S-adenosylhomocysteine hydrolase (SAH). Thus the virus life cycle should be cut off once the action of SAH is inhibited. Our study was focussed on the discovery of potential inhibitor against SAH. We performed a similarity search in Traditional Chinese Medicine Database and retrieved 17 hits with high similarity. After that we virtually docked the 17 compounds as well as the natural substrates to the hydrolase using Autodock 3.0.1 software. Then we discussed about the mechanism of the inhibition reaction, followed by proposing the potential inhibitors by comparing best docked solutions and possible modification for the best inhibitors.  相似文献   

19.
The first synthetic route of novel 4′-cyclopropylated carbovir analgues is described. The construction of cyclopropylated quaternary carbon at 4′-position of carbocyclic nucleosides was successfully made via sequential Johnson's orthoester rearrangement and ring-closing metathesis (RCM) starting from ethyl glycolate. Synthesized compounds 15 and 16 showed moderate antiviral activity without any cytotoxicity up to 100 μmol.  相似文献   

20.
Abstract

The synthesis of carbocyclic 1-[4-(hydroxymethyl)cyclopent-2-enyl]-1,2,4-triazole-3-carboxamide (6a) and its derivatives was achieved from triol 10 in excellent overall yield. This route involves a Pd(0)-catalyzed coupling reaction as a key step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号