首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Breast cancer is a heterogeneous disease, so therapeutic predictive biological markers need to be identified. To date an accurate evaluation of predictive markers is mainly done at the primary site; however, the main goal of adjuvant therapy for breast cancer is the control of micrometastases. The aim of this study is to assess as therapeutic and/or prognostic marker, the proliferation status of primary tumors and involved nodes as measured by Ki67 and thymidylate synthase (TS) expression, in 30 breast cancer node positive patients. TS is the main target of 5-fluorouracil (5-FU) activity, and its overexpression is one of the mechanisms of 5-FU drug resistance; however, in some studies its absence is responsible for a worse response to 5-FU. Our results show that malignant cells of involved nodes were in a post mitotic phase of the cell cycle, and show a low proliferation index and TS expression, while the primary tumours and controls, were strongly positive. On these basis we can hypothesize that these cells could be less sensitive to 5-FU. Further studies are necessary to identify other mechanisms responsible for their metastasing capability and/or for their aggressiveness.  相似文献   

2.
Thymidylate synthase (TS) is a major target of 5-fluorouracil (5-FU) and dihydropyrimidine dehydrogenase (DPD) is a rate-limiting enzyme in the degradation of 5-FU. Whether TS or DPD could be used as valuable parameters for 5-FU sensitivity in clinical patients are largely unknown. We analyzed TS and DPD expression in breast carcinomas to evaluate the clinicopathological significance of these enzymes in patients with invasive breast cancer receiving 5-FU-based chemotherapy. A total of 197 patients with invasive ductal carcinoma were included in our study. Both the TS and DPD expression were analyzed using immunohistochemical method for all the surgical samples. Sixty-three out of 197 (31.97%) patients are positive for TS expression, and 77 out of 197 (39.09%) patients are positive for DPD expression. TS expression was not correlated with DPD expression. Patients with TS-positivity had aggressive phenotype including large tumor size, low differentiation and nodal metastasis. DPD expression is not related with phenotype or prognosis. Multivariate analysis demonstrated that TS expression was an independent prognostic factor for both disease-free and overall survival. The current study demonstrated that TS but not DPD expression was associated with both progression and prognosis in breast cancer receiving 5-FU-based chemotherapy. TS expression in the primary tumor might be useful as a predictive parameter for the efficacy of 5-FU-based chemotherapy for breast cancer.  相似文献   

3.
Thymidine phosphorylase (TP), thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) have been indicated as possible predictive markers for epithelial malignancies. All these three enzymes are actively involved in 5-FU metabolism. In this report, we investigated mRNA expression of these factors with real-time quantitative PCR in a series of 86 micro-selected breast carcinomas and 8 micro-selected tumour-adjacent normal breast epithelial specimens. Highly variable mRNA expressions of these factors were observed in both normal and cancerous samples. TP and TS mRNA expressions in breast carcinomas were elevated, but only TS mRNA expression showed a trend for statistical difference, compared with the expression in normal breast epithelial samples. Although the DPD mRNA expression range in tumours was also elevated, the average mean was reduced in tumours compared to that in normal samples. No association between mRNA expressions of TP, TS and DPD and clinicopathological features such as histological grade, tumour size, node status, S-phase fraction, ploidy, and clinical stage was found. A negative association between DPD mRNA expression and age was, however, revealed. Ten-year follow-up analysis showed no association between TP and DPD mRNA expression and clinical outcome. An high level of TS mRNA expression, however, was associated with a shorter clinical survival, indicating its potential role as a clinical marker in breast carcinoma.  相似文献   

4.
5-Fluorouracil (5-FU) is the first rationally designed antimetabolite, which achieves its therapeutic efficacy through inhibition of the enzyme thymidylate synthase (TS), which is essential for the synthesis and repair of DNA. However, prolonged exposure to 5-FU induces TS overexpression, which leads to 5-FU resistance in cancer cells. Several studies have identified curcumin as a potent chemosensitizer against chemoresistance induced by various chemotherapeutic drugs. In this study, we report for the first time, with mechanism-based evidences, that curcumin can effectively chemosensitize breast cancer cells to 5-FU, thereby reducing the toxicity and drug resistance. We found that 10 μM 5-FU and 10 μM curcumin induces a synergistic cytotoxic effect in different breast cancer cells, independent of their receptor status, through the enhancement of apoptosis. Curcumin was found to sensitize the breast cancer cells to 5-FU through TS-dependent downregulation of nuclear factor-κB (NF-κB), and this observation was confirmed by silencing TS and inactivating NF-κB, both of which reduced the chemosensitizing efficacy of curcumin. Silencing of TS suppressed 5-FU-induced NF-κB activation, whereas inactivation of NF-κB did not affect 5-FU-induced TS upregulation, confirming that TS is upstream of NF-κB and regulates the activation of NF-κB in 5-FU-induced signaling pathway. Although Akt/PI3kinase and mitogen-activated protein kinase pathways are activated by 5-FU and downregulated by curcumin, they do not have any role in regulating the synergism. As curcumin is a pharmacologically safe and cost-effective compound, its use in combination with 5-FU may improve the therapeutic index of 5-FU, if corroborated by in vivo studies and clinical trials.  相似文献   

5.
6.
Colorectal cancer (CRC) is one of the most common cancers globally. Despite recent advances in therapeutic approaches, this cancer continues to have a poor prognosis, particularly when diagnosed late. 5-Fluorouracil (5-FU) has been commonly prescribed for patients with CRC, but resistance to 5-FU is one of the main reasons for failure in the treatment of this condition. Recently, microRNAs (miRNAs) have been established as a means of modifying the signaling pathways involved in initiation and progression of CRC and their role as oncogene or tumor suppressor have been investigated in various studies. Moreover, miRNAs through various mechanisms play an important role in inducing tumor resistance or sensitivity to anticancer drugs. Detecting and targeting these mechanisms may be a new therapeutic approach. This review summarizes the current knowledge about the potential roles of miRNAs in 5-FU resistance, with particular emphasis on molecular mechanism involved.  相似文献   

7.
胸苷酸合成酶表达调控的分子机制   总被引:3,自引:0,他引:3  
胸苷酸合成酶(thymidylate synthase,TS)是生物体内催化胸苷酸合成所必需的酶.多年来一直作为肿瘤化疗的重要靶酶。对TS基因调控机制的研究表明:基因扩增、转录、翻译和翻译后过程都参与了TS表达的调控。先前的研究表明:TS可与自身的mRNA结合形成TS-mRNA复合物,使mRNA翻译受阻,5-氟尿嘧啶(5-fluorouracil,5-FU)等抗代谢药物可与TS蛋白结合,结合后的复合物不能与TS mRNA作用,导致体内TS的表达升高,是肿瘤细胞产生抗药性的重要分子机制之一。现对TS基因表达调控研究进展、翻译调控与抗药性产生的分子机制进行综述。  相似文献   

8.
Few studies have addressed the risk of recurrence by assessing proliferation markers in lymph node metastasis from breast cancer. Here, we aimed to examine Ki-67 expression and mitotic count in lymph nodes in comparison with primary tumors. A cohort of node positive breast cancer (n = 168) was studied as a part of the prospective Norwegian Breast Cancer Screening Program (1996–2009). The percentage of Ki-67 positivity was counted per 500 tumor cells in hot-spot areas (x630). Mitotic count was conducted in the most cellular and mitotic active areas in 10 high power fields (x400). Our results showed that Ki-67 and mitotic count were significantly correlated between primary tumor and lymph nodes (Spearman`s correlation 0. 56 and 0.46, respectively) and were associated with most of the histologic features of the primary tumor. Univariate survival analysis (log-rank test) showed that high Ki-67 and mitotic count in the primary tumor and lymph node metastasis significantly predicted risk of recurrence. In multivariate analysis, mitotic count in the lymph node metastasis was an independent predictor of tumor recurrence. In conclusion, proliferation markers in lymph node metastases significantly predicted disease free survival in node positive breast cancer.  相似文献   

9.
5-Fluorouracil (5-FU) is commonly used to treat breast cancer; however, it becomes increasingly ineffective with tumor progression. Epithelial-to-mesenchymal transition (EMT) is a process whereby cells acquire morphologic and molecular alterations facilitating tumor metastasis and progression. Emerging evidence associates chemoresistance with acquisition of EMT in cancer. However, it is not clear whether this phenomenon is involved in acquired resistance to 5-FU. Using a previously established in vitro cell model of 5-fluorouracil-resistant MCF7 cells (MCF7/5-FU), we assessed the cellular morphology, molecular changes, migration and invasion consistent with EMT. We found that silencing of Snail by stable RNA interference reversed the EMT and greatly abolished invasion behavior of MCF7/5-FU cells. We also showed that inhibition of Snail increased the sensitivity of 5-FU-resistant cells to 5-FU. Our study provided a new insight into EMT-like phenotypic changes associated with 5-FU resistance in MCF7 cells. We believed that down-regulation of Snail could be a potential novel therapeutic approach to overcoming chemoresistance and preventing metastasis during 5-FU chemotherapy.  相似文献   

10.
Several molecular and cellular markers are currently used as prognostic indicators for diagnosis and therapeutic intervention of breast cancer. Although some of these markers have helped clinicians provide an earlier diagnosis (or prognosis), they have failed to provide adequate information about the mechanisms responsible for different stages of tumor malignancy so that more effective anticancer therapies can be developed. Recently translocator protein (TSPO), formerly known as the peripheral benzodiazepine receptor (PBR), has received attention as a potential target for anticancer drug development. It is a well-conserved protein, located at outer-inner mitochondrial membrane contact sites, and is expressed in almost all tissues, although the level of expression varies. TSPO is closely associated with the 32 kDa voltage-dependent anion channel (VDAC) and the 30 kDa adenine nucleotide translocase (ANT), considered to form the core of a mitochondria multiprotein complex [named the mitochondrial permeability transition pore (MPTP)] and plays a role in apoptotic cell death. As the major role of TSPO is steroid biosynthesis, TSPO expression is particularly high in organs involved in steroidogenesis such as the adrenals, testes, ovaries, placenta, prostate, colon, kidney, and cardiovascular system. It is well known that TSPO is over-expressed in highly aggressive tumors, especially those of the breast, and that expression correlates with advancing stages of this malignancy. TSPO expression, nuclear localization, and TSPO-mediated cholesterol transport into the nucleus are involved in breast cancer cell proliferation and aggressive phenotype expression. Hence, it can be used as a biomarker in the stage-dependent diagnosis of this cancer. In addition, cell proliferation, invasion and migration appears to be decreased when treated with high doses of TSPO ligand PK-11195, a compound that may represent a therapeutic agent for the control of breast cancer progression. Control of breast cancer development by consumption of dietary soy protein has been linked to down-regulation of the expression of TSPO-mediated angiogenic signaling molecules. This chapter provides insight into the potential of TSPO as a rational target for the development of novel therapeutics for breast cancer.  相似文献   

11.
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR) as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNα treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner, inducing phosphorylation of the protein synthesis translation initiation factor eIF-2α and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNα combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.  相似文献   

12.
Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.  相似文献   

13.
Epidermal growth factor receptor (EGFR) is highly expressed in certain cancer types and is involved in regulating the biological characteristics of cancer progression, including proliferation, metastasis, and drug resistance. Various medicines targeting EGFR have been developed and approved for several cancer types, such as lung and colon cancer. To date, however, EGFR inhibitors have not achieved satisfactory clinical results in breast cancer, which continues to be the most serious malignant tumor type in females. Therefore, clarifying the underlying mechanisms related to the ineffectiveness of EGFR inhibitors in breast cancer and developing new EGFR-targeted strategies (e.g., combination therapy) remain critical challenges. Various studies have demonstrated aberrant expression and maintenance of EGFR levels in breast cancer. In this review, we summarize the regulatory mechanisms underlying EGFR protein expression in breast cancer cells, including EGFR mutations, amplification, endocytic dysfunction, recycling acceleration, and degradation disorders. We also discuss potential therapeutic strategies that act directly or indirectly on EGFR, including reducing EGFR protein expression, treating the target protein to mediate precise clearance, and inhibiting non-EGFR signaling pathways. This review should provide new therapeutic perspectives for breast cancer patients with high EGFR expression.  相似文献   

14.
15.
Resistance to fluoropyrimidine-based chemotherapy is the main reason for the failure of cancer treatment, and drug resistance is associated with an inability of tumor cells to undergo apoptosis in response to treatment. Alterations in the expression of epithelial cell adhesion molecule (EpCAM) affect the sensitivity or resistance of tumor cells to anticancer treatment and the activity of intracellular signaling pathways. However, the role of EpCAM in the induction of apoptosis in breast cancer cells remains unclear. Here, we investigated the effect of EpCAM gene knockdown on chemosensitivity to 5-fluorouracil (5-FU) in MCF-7 cells and explored the underlying mechanisms. Our results showed that knockdown of EpCAM promoted apoptosis, inhibited cell proliferation and caused cell-cycle arrest. EpCAM knockdown enhanced the cytotoxic effect of 5-FU, promoting apoptosis by downregulating the expression of the anti-apoptotic protein Bcl-2 and upregulating the expression of the pro-apoptotic proteins Bax, and caspase3 via the ERK1/2 and JNK MAPK signaling pathways in MCF-7 cells. These results indicate that knockdown of EpCAM may have a tumor suppressor effect and suggest EpCAM as a potential target for the treatment of breast cancer.  相似文献   

16.
Consorcial projects focused on 5 cancer types, breast-, colorectal-, head and neck- and pediatric cancers, and malignant melanoma. Breast cancer studies revealed unique splicing mechanisms concerning BRCA1. In sporadic breast cancers the involvement of DNA-repair genes was proved to be dependent on the histological type. Bone-metastatic tumors have been characterized by decreased NM23 and increased c-met and p53 expressions. C-erbB2 genotype of the primary tumor was not maintained frequently in bone metastases. Application of DNA-microarray and quantitative PCR technologies improved the prediction of therapeutic sensitivity of breast cancers. Colorectal cancer studies revealed regional inhomogenities (clusters) in various geographical regions of Hungary, which were distinct in the case of colonic and rectal cancers. To increase the sensitivity of fecal blood test of colorectal cancer screening, a new double-antibody test was developed and tested in a large cohort of patients. Genetic analysis revealed that hypermethylation is a significant factor in microsatellite instability which, and plays a role in silencing of APC and E-cadherin genes as well. The Hungarian pattern of TS polymorphism was also determined and was correlated not only with the efficacy of 5-FU treatment but with the progression of the disease as well. Population-based studies have been carried out in head and neck cancer patients (HNC) and smokers as well to reveal the genetic background of increasing tumor incidence. These studies revealed polymorphism in XRCC1/3 methylation enzyme gene which has preventive role. Other studies found frequent local immunosuppression in HNC patients. Studies indicated that the success of irradiation in this cancer type is dependent on the anti-vascular effects. Pediatric cancer studies determined the parameters of neuroblastoma screening based on VMA measurements. New splice variants of the WT1 gene involved in the monitoring of MRD of ALL patients was also described this year. We also obtained positive experimental data for the retinoic acid therapy of ALL. Melanoma studies extensively used DNA-microarray technology which identified 4 melanoma-specific and 2 melanoma progression-specific genes. In experimental human melanoma xenograft models we have identified 3 anti-metastatic agents: low molecular weight heparin, 2-methoxyestradiol and erythropoietin-alpha, where the later was characterized by specific effects on tumor vasculature.  相似文献   

17.
In breast cancer, inactivation of the RB tumor suppressor gene is believed to occur via multiple mechanisms to facilitate tumorigenesis. However, the prognostic and predictive value of RB status in disease-specific clinical outcomes has remained uncertain. We investigated RB pathway deregulation in the context of both ER-positive and ER-negative disease using combined microarray datasets encompassing over 900 breast cancer patient samples. Disease-specific characteristics of RB pathway deregulation were investigated in this dataset by evaluating correlation among pathway genes as well as differential expression across patient tumor populations defined by ER status. Survival analysis among these breast cancer samples demonstrates that the RB-loss signature is associated with poor disease outcome within several independent cohorts. Within the ER-negative subpopulation, the RB-loss signature is associated with improved response to chemotherapy and longer relapse-free survival. Additionally, while individual genes in the RB target signature closely reproduce its prognostic value, they also serve to predict and monitor response to therapeutic compounds, such as the cytostatic agent PD-0332991. These results indicate that the RB-loss signature expression is associated with poor outcome in breast cancer, but predicts improved response to chemotherapy based on data in ER-negative populations. While the RB-loss signature, as a whole, demonstrates prognostic and predictive utility, a small subset of markers could be sufficient to stratify patients based on RB function and inform the selection of appropriate therapeutic regimens.Key words: RB, breast cancer, microarray, proliferation, cytostatics  相似文献   

18.
Kim S  Park DH  Shim J 《Molecules and cells》2008,26(4):344-349
5-Fluorouracil (5-FU), a pyrimidine antagonist, has a long history in cancer treatment. The targeted pyrimidine biosynthesis pathway includes dihydropyrimidine dehydrogenase (DPD), which converts 5-FU to an inactive metabolite, and thymidylate synthase (TS), which is a major target of 5-FU. Using Caenorhabditis elegans as a model system to study the functional and resistance mechanisms of anti-cancer drugs, we examined these two genes in order to determine the extent of molecular conservation between C. elegans and humans. Overexpression of the worm DPD and TS homologs (DPYD-1 and Y110A7A.4, respectively) suppressed germ cell death following 5-FU exposure. In addition, DPYD-1 depletion by RNAi resulted in 5-FU sensitivity, while treatment with Y110A7A.4 RNAi and 5-FU resulted in similar patterns of embryonic death. Thus, the pathway of 5-FU function appears to be highly conserved between C. elegans and humans at the molecular level.  相似文献   

19.
Breast cancer is one of the most common malignancies of all cancers in women worldwide. Many difficulties reside in the prediction of tumor metastatic progression because of the lack of sufficiently reliable predictive biological markers, and this is a permanent preoccupation for clinicians. Manganese superoxide dismutase (MnSOD) may represent a rational candidate as a predictive biomarker of breast tumor metastatic progression, because its gene expression is profoundly altered between early and advanced breast cancer, in contrast to expression in the normal mammary gland. In this review, we report the characterization of some gene polymorphisms and molecular mechanisms of SOD2 gene regulation, which allows a better understanding of how MnSOD is decreased in early breast cancer and increased in advanced breast cancer. Several studies display the biological significance of MnSOD level in proliferation as well as in invasive and angiogenic abilities of breast tumor cells by controlling superoxide anion radical (O2•−) and hydrogen peroxide (H2O2). Particularly, they report how these reactive oxygen species may activate some signaling pathways involved in breast tumor growth. Emerging understanding of these findings provides an interesting framework for guiding translational research and suggests a way to define precisely the clinical interest of MnSOD as a prognostic and/or predicting marker in breast cancer, by associating with some regulators involved in SOD2 gene regulation and other well-known biomarkers, in addition to the typical clinical parameters.  相似文献   

20.
Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS) expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU) treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号