首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic comb-type copolymer (CCC) consisting of a polycationic backbone and abundant graft water-soluble chains exhibited considerable stabilization effect on DNA hybrids, such as double- and triple-stranded DNAs. Here, we describe the effect of CCC on antiparallel G-quadruplex folding of human telomeric DNA, d(GGGTTA)(n) in the presence of sodium ions. CCC did not significantly alter the circular dichroism (CD) spectra of d((GGGTTA)(3)GGG) and d((GGGTTA)(7)GGG) indicating that the CCC did not influence the antiparallel folding of the telomeric repeats. Hence, the ionic interaction of CCC with the DNA sequence did not interfere with specific interaction of the DNA with sodium ions to form G-quartets. Interestingly, CCC did not change the melting temperature of the d((GGGTTA)(3)GGG) suggesting negligible stabilizing effect of CCC on the antiparallel quadruplex structure.  相似文献   

2.
DNA and RNA guanine-quadruplexes (G4s) are stabilized by several cations, in particular by potassium and sodium ions. Generally, potassium stabilizes guanine-quartet assemblies to a larger extent than sodium; in this article we report about a higher-order G4 structure more stable in sodium than in potassium. Repeats of the DNA GGGTTA telomeric motif fold into contiguous G4 units. Using three independent approaches (thermal denaturation experiments, isothermal molecular-beacon and protein-binding assays), we show that the (GGGTTA)7GGG sequence, folding into two contiguous G4 units, exhibits an unusual feature among G4 motifs: despite a lower thermal stability, its sodium conformation is more stable than its potassium counterpart at physiological temperature. Using differential scanning calorimetry and mutated sequences, we show that this switch in the relative stability of the sodium and potassium conformations (occurring around 45°C in 100 mM cation concentration) is the result of a more favorable enthalpy change upon folding in sodium, generated by stabilizing interactions between the two G4 units in the sodium conformation. Our work demonstrates that interactions between G4 structural domains can make a higher-order structure more stable in sodium than in potassium, even though its G4 structural domains are individually more stable in potassium than in sodium.  相似文献   

3.
We have examined the stability of fluorescently-labelled oligonucleotides that are based on the human telomeric repeat [(GGGTTA)(3)GGG], in which one of the guanines in turn is substituted with inosine. We show that the relative stability of the substitutions is different in the presence of sodium and potassium. The data for potassium suggest a parallel arrangement of the strands, while the sodium form is mixed parallel and antiparallel.  相似文献   

4.
The anti-tumour drug, cisplatin, preferentially forms adducts at G-rich DNA sequences. Telomeres are found at the ends of chromosomes and, in humans, contain the repeated DNA sequence (GGGTTA)n that is expected to be targeted by cisplatin. Using a plasmid clone with 17 tandem telomeric repeats, (GGGTTA)17, the DNA sequence specificity of cisplatin was investigated utilising the linear amplification procedure that pin-pointed the precise sites of cisplatin adduct formation. This procedure used a fluorescently labelled primer and capillary electrophoresis with laser-induced fluorescence detection to determine the DNA sequence specificity of cisplatin. This technique provided a very accurate analysis of cisplatin-DNA adduct formation in a long telomeric repeat DNA sequence. The DNA sequence specificity of cisplatin in a long telomeric tandem repeat has not been previously reported. The results indicated that the 3′-end of the G-rich strand of the telomeric repeat was preferentially damaged by cisplatin and this suggests that the telomeric DNA repeat has an unusual conformation.  相似文献   

5.
In addition to the well-known Watson–Crick double helix, DNA can form other structures. One of them is a four-stranded quadruplex, formation of which was also acknowledged in in vivo conditions. It was suggested that the presence of quadruplexes in e.g. telomeric region has a significant biological importance. We have studied structural properties of the human telomeric quadruplex formed by G3(T2AG3)3 and related sequences, in which each guanine base was one-by-one replaced by adenine. In the next step, we have studied sequences, in which two, or even four guanines were replaced by adenine. These sequences were studied in the presence of sodium or potassium ions. Using CD spectroscopy, UV thermal stability measurements, and polyacrylamide gel electrophoresis we found that none of the substitutions hindered the formation of the antiparallel quadruplex formed by the unsubstituted sequence in sodium solutions. However, the effect of substitution differed depending on the position of the guanine replaced. The middle quartet of the antiparallel basket scaffold was the most sensitive and led to the least stable structures. With other sequences, the effect of substitution depends on the position and also on the syn/anti glycosidic bond orientation of the appropriate guanosine in the original quadruplex structure. In the case of the multiple A for G substitutions, the G3(T2AG3)3 quadruplex was most destabilized by the G:G:A:A tetrad, in which the adenosines substituted syn guanosines. Interestingly, unlike with G3(T2AG3)3, no structural transitions were observed with the A-containing analogs of the sequence when sodium ions were replaced by potassium ions. The basic quadruplex topology remained antiparallel for all modified sequences in both salts. As in vivo misincorporation of A for a G in the telomeric sequence is possible and potassium is a physiological salt, these findings may be biologically important. In our next studies, we have compared the effect of the G to A substitutions in the human telomere sequence with 8-oxoguanine substituted samples or samples containing guanine apurinic sites. Data obtained from our study show a noticeable trend: it is not the type of the lesion but the position of the modification determines the effect on the conformation and stability of the quadruplex.  相似文献   

6.
Abstract

Guanine rich DNA sequences of regulatory genomic regions form secondary structures known as G-quadruplexes usually stabilized by tetrads of Hoogsteen hydrogen bonded guanines. The in vivo existence of G-quadruplexes ascertains their biological roles. Human telomeric repeats are the most studied G-rich sequences. The four repeat Giardia telomeric sequence (TAGGG)4 differs from its human counterpart (TTAGGG)4, by deletion of one T at the G-tract intervening site of each repeat. We show here that whilst the two repeat Giardia telomeric sequence (TAGGG)2 forms parallel and antiparallel quadruplexes with tetramolecular topology exclusively, the four repeat version (TAGGG)4 forms a tetramolecular (antiparallel) and unimolecular (parallel) quadruplexes in Na+. The tetramolecular (antiparallel) G-quadruplex formed by four repeats of Giardia telomeric sequence is stabilized by the additional Watson-Crick bonding between its intervening TA bases aligned in antiparallel fashion. Four stranded antiparallel quadruplex for four repeats of any telomeric sequence have not been characterized till date. We hypothesize that telomeric association in antiparallel fashion, (via G-overhangs to form tetramolecular quadruplex) could be a biologically relevant molecular event. Further, coexistence of Hoogsteen as well as Watson-Crick base pairing might give insight for recognition of conformationally diverse DNA structures by ligands.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
A repeated non-coding DNA sequence d(TTAGGG)n is present in the telomeric ends of all human chromosomes. These repeats can adopt multiple inter and intramolecular non-B-DNA conformations that may play an important role in biological processes. Two intramolecular structures of the telomeric oligonucleotide dAGGG(TTAGGG)3, antiparallel and parallel, have been solved by NMR and X-ray crystallography. In both structures, the telomeric sequence adopts an intramolecular quadruplex structure that is stabilized by G-4 quartets, but the ways in which the sequence folds into the quadruplex are different. The folds of the human telomeric DNA were described as an anti-parallel basket-type and a parallel propeller-type. We applied 125I-radioprobing to determine the conformation of the telomeric quadruplex in solution, in the presence of either Na+ or K+ ions. The probability of DNA breaks caused by decay of 125I is inversely related to the distance between the radionuclide and the sugar unit of the DNA backbone; hence, the conformation of the DNA backbone can be deduced from the distribution of breaks. The probability of breaks measured in the presence of Na+ and K+ were compared with the distances in basket-type and propeller-type quadruplexes obtained from the NMR and crystal structures. Our radioprobing data demonstrate that the antiparallel conformation was present in solution in the presence of both K+ and Na+. The preferable conformation in the Na+-containing solution was the basket-type antiparallel quadruplex whereas the presence of K+ favored the chair-type antiparallel quadruplex. Thus, we believe that the two antiparallel and the parallel conformations may coexist in solution, and that their relative proportion is determined by the type and concentration of ions.  相似文献   

8.
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions.  相似文献   

9.
The structural interconversion between the G-quadruplex and duplex in vivo is an important subject. In the present study, we used human telomeric DNA duplex composed of GGG(TTAGGG)3/CCC(TAACCC)3 as a model system to investigate its properties under near physiological conditions by spectroscopic methods. Circular dichroism and fluorescence spectra demonstrated that G-quadruplex structure can be formed from duplex at near physiological pH (pH 7.4), salt concentration (150 mM K+), and temperature (37 °C) in the presence of molecular crowding agent PEG (400 g/l), whereas the G-quadruplex structure cannot be formed at 25 °C in buffer containing 150 mM K+ in the presence of PEG. It is found that the formation rate of G-quadruplex structure depends on the temperature and the concentrations of both PEG and K+. This work suggests that human telomeric G-quadruplex structure may be potentially formed from Watson–Crick duplex in vivo.  相似文献   

10.
Recently, the human telomeric d[TAGGG(TTAGGG)3] sequence has been shown to form in K+ solution an intramolecular (3+1) G-quadruplex structure, whose G-tetrad core contains three strands oriented in one direction and the fourth in the opposite direction. Here we present a study on the structure of the Bombyx mori telomeric d[TAGG(TTAGG)3] sequence, which differs from the human counterpart only by one G deletion in each repeat. We found that this sequence adopted multiple G-quadruplex structures in K+ solution. We have favored a major G-quadruplex form by a judicious U-for-T substitution in the sequence and determined the folding topology of this form. We showed by NMR that this was a new chair-type intramolecular G-quadruplex which involved a two-layer antiparallel G-tetrad core and three edgewise loops. Our result highlights the effect of G-tract length on the folding topology of G-quadruplexes, but also poses the question of whether a similar chair-type G-quadruplex fold exists in the human telomeric sequences.  相似文献   

11.
We have examined the folding, stability and kinetics of intramolecular quadruplexes formed by DNA sequences containing four G3 tracts separated by either single T or T4 loops. All these sequences fold to form intramolecular quadruplexes and 1D-NMR spectra suggest that they each adopt unique structures (with the exception of the sequence with all three loops containing T4, which is polymorphic). The stability increases with the number of single T loops, though the arrangement of different length loops has little effect. In the presence of potassium ions, the oligonucleotides that contain at least one single T loop exhibit similar CD spectra, which are indicative of a parallel topology. In contrast, when all three loops are substituted with T4 the CD spectrum is typical of an antiparallel arrangement. In the presence of sodium ions, the sequences with two and three single T loops also adopt a parallel folded structure. Kinetic studies on the complexes with one or two T4 loops in the presence of potassium ions reveal that sequences with longer loops display slower folding rates.  相似文献   

12.
Linear heteroareneanthracenediones have been shown to interfere with DNA functions, thereby causing death of human tumor cells and their drug resistant counterparts. Here we report the interaction of our novel antiproliferative agent 4,11-bis[(2-{[acetimido]amino}ethyl)amino]anthra[2,3-b]thiophene-5,10-dione with telomeric DNA structures studied by isothermal titration calorimetry, circular dichroism and UV absorption spectroscopy. New compound demonstrated a high affinity (Kass∼106 M−1) for human telomeric antiparallel quadruplex d(TTAGGG)4 and duplex d(TTAGGG)4∶d(CCCTAA)4. Importantly, a ∼100-fold higher affinity was determined for the ligand binding to an unordered oligonucleotide d(TTAGGG TTAGAG TTAGGG TTAGGG unable to form quadruplex structures. Moreover, in the presence of Na+ the compound caused dramatic conformational perturbation of the telomeric G-quadruplex, namely, almost complete disordering of G-quartets. Disorganization of a portion of G-quartets in the presence of K+ was also detected. Molecular dynamics simulations were performed to illustrate how the binding of one molecule of the ligand might disrupt the G-quartet adjacent to the diagonal loop of telomeric G-quadruplex. Our results provide evidence for a non-trivial mode of alteration of G-quadruplex structure by tentative antiproliferative drugs.  相似文献   

13.
Secondary structures of the G-rich strand of human telomere DNA fragments G3(TTAG3)n, n = 1–16, have been studied by means of circular dichroism spectroscopy and PAGE, in solutions of physiological potassium cation concentrations. It has been found that folding of these fragments into tetraplexes as well as tetraplex thermostabilities and enthalpy values depend on the number of TTAG3 repeats. The suggested topologies include, e.g. antiparallel and parallel bimolecular tetraplexes, an intramolecular antiparallel tetraplex, a tetraplex consisting of three parallel chains and one antiparallel chain, a poorly stable parallel intramolecular tetraplex, and both parallel and antiparallel tetramolecular tetraplexes. G3(TTAG3)3 folds into a single, stable and very compact intramolecular antiparallel tetraplex. With an increasing repeat number, the fragment tetraplexes surprisingly are ever less thermostable and their migration and enthalpy decrease indicate increasing irregularities or domain splitting in their arrangements. Reduced stability and different topology of lengthy telomeric tails could contribute to the stepwise telomere shortening process.  相似文献   

14.
In the present study, electrospray ionization mass spectrometry (ESI-MS) and spectroscopy have been used to evaluate the non-covalent interaction, stoichiometry, and selectivity of two synthetic coumarin-attached nucleoside and non-nucleoside 1,2,3-triazoles, namely, (1-(5-(hydroxymethyl)-4-(4-((2-oxo-2H-chromen-4-yloxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-furan-2-yl)5-methyl pyrimidine-2,4(1H,3H)-dione (Tr1) and 4-((1-((-1-methyl-1H-indol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (Tr2) with two different human telomeric intermolecular G-quadruplex DNA structures formed by d(T2AG3) and d(T2AG3)2 sequences. ESI-MS studies indicate that Tr1 specifically interacts with four-stranded intermolecular parallel quadruplex complex, whereas Tr2 interacts with two hairpin as well as four-stranded intermolecular parallel quadruplex complexes. UV–Visible spectroscopic studies suggest that Tr1 and Tr2 interact with G-quadruplex structure and unwind them. Job plots show that stoichiometry of ligand:quadruplex DNA is 1:1. Circular dichroism (CD) studies of G-quadruplex DNA and Tr1/Tr2 ligands manifest that they unfold DNA on interaction. Fluorescence studies demonstrate that ligand molecules intercalate between the two stacks of quadruplex DNA and non-radiative energy transfer occurs between the excited ligand molecules (donor) and quadruplex DNA (acceptor), resulting in enhancement of fluorescence emission intensity. Thus, these studies suggest that nucleoside and non-nucleoside ligands efficiently interact with d(T2AG3) and d(T2AG3)2 G-quadruplex DNA but the interaction is not alike with all kinds of quadruplex DNA, this is probably due to the variation in the pharmacophores and structure of the ligand molecules.  相似文献   

15.
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.  相似文献   

16.
Inspired by the enormous importance attributed to the structure and function of human telomeric DNA, we focus our attention on the interaction of [Ru(bpy)2(dppz)]2+ with the guanine-rich single-strand oligomer 5′-AGGGTTAGGGTTAGGGTTAGGG-3′ (22AG) and the complementary cytosine-rich strand (22CT). In Na+ buffer, 22AG may adopt an antiparallel basket quadruplex, whereas, it favours a mixed parallel/antiparallel structure in K+ buffer. 22CT may self-associate at acidic pH into an i-motif. In this paper, the interaction between [Ru(bpy)2(dppz)]2+ and each unusual DNA was evaluated. It was interesting that [Ru(bpy)2(dppz)]2+ could promote the human telomeric repeat 22AG to fold into intramolecular antiparallel G-quadruplex without any other cations. What's more, [Ru(bpy)2(dppz)]2+ was found to have a strong preference for binding to G-quadruplexes that were induced through either Na+ or K+, while weak binding to i-motif was observed. The results also indicated that [Ru(bpy)2(dppz)]2+ could serve as a prominent molecular “light switch” for both G-quadruplexes, revealing a potential application of the title complex in luminescent signaling of G-quadruplex DNA.  相似文献   

17.
Bleomycin is an antibiotic drug that is widely used in cancer chemotherapy. Telomeres are located at the ends of chromosomes and comprise the tandemly repeated DNA sequence (GGGTTA) n in humans. Since bleomycin cleaves DNA at 5??-GT dinucleotide sequences, telomeres are expected to be a major target for bleomycin cleavage. In this work, we determined the DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. This was accomplished using a linear amplification procedure, a fluorescently labelled oligonucleotide primer and capillary gel electrophoresis with laser-induced fluorescence detection. This represents the first occasion that the DNA sequence specificity of bleomycin cleavage in telomeric DNA sequences in human cells has been reported. The bleomycin DNA sequence selectivity was mainly at 5??-GT dinucleotides, with lesser amounts at 5??-GG dinucleotides. The cellular bleomycin telomeric DNA damage was also compared with bleomycin telomeric damage in purified human genomic DNA and was found to be very similar. The implications of these results for the understanding of bleomycin??s mechanism of action in human cells are discussed.  相似文献   

18.
To understand the regulation mechanism of fission yeast telomeric DNA, we analyzed the structural properties of 4Gn: d(G(n)TTAC)(4) (n = 3, 4) and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.  相似文献   

19.
To understand the regulation mechanism of fission yeast telomeric DNA, we analysed the structural properties of Gn: d(GnTTAC) (n=2-6) and 4Gn: d(GnTTAC)4 (n=3 and 4), and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). G4, G5 and G6 formed a parallel tetraplex in contrast with no tetraplex formation by G2 and G3. Also, 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The variety of tetraplex structures was governed by the number of consecutive guanines in a single copy and the number of repeats. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. The interaction with mutant Pot1DBD proteins revealed that the ability to unfold the antiparallel tetraplex was strongly correlated with the specific binding affinity for the single-stranded telomeric DNA. The result suggests that the decrease in the free single strand upon the complex formation with Pot1DBD may shift the equilibrium from the tetraplex to the single strand, which may cause the tetraplex unfolding. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.  相似文献   

20.
A prolonged expansion of GGGGCC repeat within non-coding region of C9orf72 gene has been identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are devastating neurodegenerative disorders. Formation of unusual secondary structures within expanded GGGGCC repeat, including DNA and RNA G-quadruplexes and R-loops was proposed to drive ALS and FTD pathogenesis. Initial NMR investigation on DNA oligonucleotides with four repeat units as the shortest model with the ability to form an unimolecular G-quadruplex indicated their folding into multiple G-quadruplex structures in the presence of K+ ions. Single dG to 8Br-dG substitution at position 21 in oligonucleotide d[(G4C2)3G4] and careful optimization of folding conditions enabled formation of mostly a single G-quadruplex species, which enabled determination of a high-resolution structure with NMR. G-quadruplex structure adopted by d[(G4C2)3GGBrGG] is composed of four G-quartets, which are connected by three edgewise C-C loops. All four strands adopt antiparallel orientation to one another and have alternating syn-anti progression of glycosidic conformation of guanine residues. One of the cytosines in every loop is stacked upon the G-quartet contributing to a very compact and stable structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号