首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The square planar Pt(II) complexes of the type [Pt(Ln)(Cl2)] (where Ln = L1?3 = thiophene-2-carboxamide derivatives and L4?6 = thiophene-2-carbothioamide derivatives) have been synthesized and characterized by physicochemical and various spectroscopic studies. MIC method was employed to inference the antibacterial potency of complexes in reference to free ligands and metal salt. Characteristic binding constant (Kb) and binding mode of complexes with calf thymus DNA (CT-DNA) were determined using absorption titration (0.76–1.61 × 105 M?1), hydrodynamic chain length assay and fluorescence quenching analysis, deducing the partial intercalative mode of binding. Molecular docking calculation displayed free energy of binding in the range of –260.06 to –219.63 kJmol?1. The nuclease profile of complexes towards pUC19 DNA shows that the complexes cleave DNA more efficiently compared to their respective metal salt. Cytotoxicity profile of the complexes on the brine shrimp shows that all the complex exhibit noteworthy cytotoxic activity with LC50 values ranging from 7.87 to 15.94 μg/mL. The complexes have been evaluated for cell proliferation potential in human colon carcinoma cells (HCT 116) and IC50 value of complexes by MTT assay (IC50 = 125–1000 μg/mL).  相似文献   

2.
Protein binding, DNA binding/cleavage and in vitro cytotoxicity studies of 2-((3-(dimethylamino)propyl)amino)naphthalene-1,4-dione (L) and its four coordinated M(II) complexes [M(II) = Co(II), Cu(II), Ni(II) and Zn(II)] have been investigated using various spectral techniques. The structure of the ligand was confirmed by spectral and single crystal XRD studies. The geometry of the complexes has been established using analytical and spectral investigations. These complexes show good binding tendency to bovine serum albumin (BSA) exhibiting high binding constant values (105 M?1) when compared to free ligand. Fluorescence titration studies reveal that these compounds bind strongly with CT-DNA through intercalative mode (Kapp 105 M?1) and follow the order: Cu(II) > Zn(II) > Ni(II) > Co(II) > L. Molecular docking study substantiate the strength and mode of binding of these compounds with DNA. All the complexes efficiently cleaved pUC18-DNA via hydroxyl radical mechanism and the Cu(II) complex degraded the DNA completely by converting supercoiled form to linear form. The complexes demonstrate a comparable in vitro cytotoxic activity against two human cancer cell lines (MCF-7 and A-549), which is comparable with that of cisplatin. AO/EB and DAPI staining studies suggest apoptotic mode of cell death, in these cancer cells, with the compounds under investigation.  相似文献   

3.
4.
The DNA-binding and photonuclease activity of newly synthesized tetra-azamacrocyclic ligand L (C32H32N8O4) and its complexes of type [MLCl2] and [ML]Cl2 (where M = Co(II), Fe(II) and Cu(II); L = N,N′-[3-(4-{5-[(2-amino-ethylamino)-methyl]-isoxazol-3yl}-phenyl)-isoxazol-5-yl methyl-ethane-1,2-diamine] are specified. An octahedral geometry has been proposed for Fe(II) and Co(II) complexes, while the Cu(II) complex has a square planar environment. The absorption spectral results indicate that the complexes bind with the base pairs of DNA, with an intrinsic binding constant Kb of Fe(II), Co(II), and Cu(II) complexes found to be 3.2 × 104 M?1, 5.3 × 104 M?1, and 4.2 × 104 M?1, respectively, in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2. The large enhancement in the relative viscosity of DNA on binding to the complexes supports the proposed DNA binding modes. The viscosity and thermal denaturation studies sustain the effective intercalation with DNA. The DNA photocleavage studies demonstrated that compounds exhibit significant photonuclease activity by a concentration dependent on singlet oxygen mediated mechanism.  相似文献   

5.
The two complexes containing bioactive ligands of the type and [Fe(L)] (PF6)2 (1) (where L = [1-{[2-{[2-hydroxynaphthalen-1-yl)methylidine]amino}phenyl)imino] methyl}naphthalene-2-ol]) and [Co(L1L2)] (PF6)3 (2) (where L1L2 = mixed ligand of 2-seleno-4-methylquinoline and 1,10-phenanthroline in the ratio 1:2, respectively) were synthesized and structurally characterized. The DNA binding property of the complexes with calf thymus DNA has been investigated using absorption spectra, viscosity measurements, and thermal denaturation experiments. Intrinsic binding constant Kb has been estimated at room temperature. The absorption spectral studies indicate that the complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 2.8 × 105 M?1 for (1) and 4.8 × 105 M?1 for (2) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2, respectively. The oxidative cleavage activity of (1) and (2) were studied by using gel electrophoresis and the results show that complexes have potent nuclease activity.  相似文献   

6.
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy)2](ClO4)2, where L1 = N,N’-bis(4-nitrocinnamald-ehyde)ethylenediamine and L2 = N,N’-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, Kb and the linear Stern–Volmer quenching constant, KSV. The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy)2](ClO4)2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.  相似文献   

7.
Two copper(II) complexes, 1 and 2 with L1 and L2 [L1 = 2-hydroxybenzyl(2-(pyridin-2-yl)ethylamine); L2 = 2-hydroxybenzyl(2-(pyridin-2-yl)methylamine)] ligands, respectively, have been synthesized and characterized. The interaction of both the complexes with DNA has been studied to explore their potential biological activity. The DNA binding properties of the complexes with calf thymus (CT) DNA were studied by spectroscopic titration. The complexes show binding affinity to CT DNA with binding constant (Kb) values in the order of 105 M−1. Thermal denaturation and circular dichroism studies suggest groove binding of the complexes to CT DNA. Complexes also exhibit strong DNA cleavage activity in presence of reducing agents like 3-mercaptopropionic acid and β-mercaptoethanol. Mechanistic studies reveal the involvement of reactive hydroxyl radicals for their DNA cleavage activity.  相似文献   

8.
Abstract

The present paper deals with the synthesis of novel macrocyclic complexes of the type [MLX]X, where [(M?=?Co(II) (1), and Ni(II) (2) X?=?(Cl2)]. The complexes are synthesized by the reaction of ligand(L)diquinolineno[1,3,7,9]tetraazacyclododecine-7,15-ethane(14H,16H)-benzene with the corresponding metal salts. The synthesized complexes are thoroughly characterized by elemental analysis, FT-IR, 1H-NMR, Mass and electronic spectra. The complexes (1) and (2) were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cell (MCF-7). MTT cytotoxicity studies shows both the complexes are most effective. The binding properties of these complexes with calf thymus-DNA were studied by absorption, emission spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum undergoes bathochromic and hypochromic shifts. The absorption spectral results indicate that the intrinsic binding constant (Kb) are 4.8?×?105?M?1 for (1) and 3.9?×?105?M?1 for (2) respectively, suggesting that complex (1) binds more strongly to CT-DNA than complex (2). The viscosity measurement results revealed the viscosity of sonicated rod like DNA fragments increased when the complex was added to the solution of CT-DNA. The synthesized ligand and its metal complexes are screened for antibacterial and antifungal activities.  相似文献   

9.
In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV–Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (Kb = 1.4 × 104 M?1) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 ?4.8 × 104 M?1. CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.  相似文献   

10.
[Pd{(C,N)–C6H4CH2NH(Et) (Qu)] (2) and [Pd{(C,N)–C6H4CH2NH(Et) (Nar)] (3) (Qu = Quercetin, Nar = Naringin) mononuclear palladium (II) complexes have been synthesized and characterized using elemental analysis, IR and electronic spectroscopy. The interaction of the prepared complexes with calf thymus DNA and bovine serum albumin (BSA), monitored by UV–visible and fluorescence titrations, respectively, have been carried out to better understand the mode of their action under biological conditions. Intercalative binding mode between the complexes and DNA is suggested by the binding constant (Kb) values of 2.5 × 106 and 3.2 × 106 for complexes 2 and 3, respectively. In particular, the in vitro cytotoxicity of the complexes on two cancer cells lines (bladder carcinoma TCC and breast cancer MCF7) showed that the compounds had broad spectrum, anti-cancer activity with low IC50 values and the order of in vitro anticancer activities is consistent with the DNA-binding affinities. In the meantime, the quenching of tryptophan emission with the addition of complexes using BSA as a model protein indicated the protein binding ability. The quenching mechanisms of BSA by the complexes were static processes, according to the results obtained. The competitive binding using Warfarin, Digoxin and Ibuprofen site markers, which contain definite biding sites, demonstrated that the complexes bind to site I on BSA. Ultimately, the binding sites of DNA and BSA with the complexes have been determined by molecular modelling studies.  相似文献   

11.
Novel chiral Schiff base ligands (R)/(S)‐2‐amino‐3‐(((1‐hydroxypropan‐2‐yl)imino)methyl)‐4H‐chromen‐4‐one (L1 and L2) derived from 2‐amino‐3‐formylchromone and (R/S)‐2‐amino‐1‐propanol and their Cu(II)/Zn(II) complexes ( R1 , S1 , R2 , and S2 ) were synthesized. The complexes were characterized by elemental analysis, infrared (IR), hydrogen (1H) and carbon (13C) nuclear magnetic resonance (NMR), electrospray ionization‐mass spectra (ESI‐MS), and molar conductance measurements. The DNA binding studies of the complexes with calf thymus were carried out by employing different biophysical methods and molecular docking studies that revealed that complexes R1 and S1 prefers the guanine–cytosine‐rich region, whereas R2 and S2 prefers the adenine–thymine residues in the major groove of DNA. The relative trend in Kb values followed the order R1 S1 R2 S2 . This observation together with the findings of circular dichroic and fluorescence studies revealed maximal potential of (R)‐enantiomeric form of complexes to bind DNA. Furthermore, the absorption studies with mononucleotides were also monitored to examine the base‐specific interactions of the complexes that revealed a higher propensity of Cu(II) complexes for guanosine‐5′‐monophosphate disodium salt, whereas Zn(II) complexes preferentially bind to thymidine‐5′‐monophosphate disodium salt. The cleavage activity of R1 and R2 with pBR322 plasmid DNA was examined by gel electrophoresis that revealed that they are good DNA cleavage agents; nevertheless, R1 proved to show better DNA cleavage ability. Topoisomerase II inhibitory activity of complex R1 revealed that the complex inhibits topoisomerase II catalytic activity at a very low concentration (25 μM). Furthermore, in vitro antitumor activity of complexes R1 and S1 were screened against human carcinoma cell lines of different histological origin. Chirality 24:977–986, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
In this work, a pair of new palladium(II) complexes, [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)], (where Gly is glycine, Phe is phenylalanine, and Tyr is tyrosine) were synthesized and characterized by UV–Vis, FT-IR, elemental analysis, 1H-NMR, and conductivity measurements. The detailed 1H NMR and infrared spectral studies of these Pd(II) complexes ascertain the mode of binding of amino acids to palladium through nitrogen of -NH2 and oxygen of -COO? groups as bidentate chelates. The Pd(II) complexes have been tested for in vitro cytotoxicity activities against cancer cell line of K562. Interactions of these Pd(II) complexes with CT-DNA and human serum albumin were identified through absorption/emission titrations and gel electrophoresis which indicated significant binding proficiency. The binding distance (r) between these synthesized complexes and HSA based on Forster?s theory of non-radiation energy transfer were calculated. Alterations of HSA secondary structure induced by complexes were confirmed by FT-IR measurements. The results of emission quenching at three temperatures have revealed that the quenching mechanism of these Pd(II) complexes with CT-DNA and HSA were the static and dynamic quenching mechanism, respectively. Binding constants (Kb), binding site number (n), and the corresponding thermodynamic parameters were calculated and revealed that the hydrogen binding and hydrophobic forces played a major role when Pd(II) complexes interacted with DNA and HSA, respectively. We bid that [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)] complexes exhibit the groove binding with CT-DNA and interact with the main binding pocket of HSA. The complexes follow the binding affinity order of [Pd(Gly)(Tyr)] > [Pd(Gly)(Phe)] with CT-DNA- and HSA-binding.  相似文献   

13.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

14.
Abstract

Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL1 and HL2) with their copper(II) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized and characterized by spectroscopic methods such as 1H, 13C NMR, UV–Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques. The absorption spectral study indicated that the copper(II) complexes of 1 and 2 had intrinsic binding constants with DNA or RNA in the range of 7.6?±?0.2?×?103?M?1 or 6.5?±?0.3?×?103M?1 and 5.7?±?0.4?×?104 M?1 or 1.8?±?0.5?×?103 M?1 respectively. The synthesized compounds and nucleic acids were simulated by molecular docking to explore more details mode of interaction of the complexes and their orientations in the active site of the receptor.  相似文献   

15.
Three mononuclear CuII complexes, [CuCl(naph‐pa)] ( 1 ), [Cu(bipy)(naph‐pa)]Cl ( 2 ), and [Cu(naph‐pa)(phen)]Cl ( 3 ) ((naph‐pa)=Schiff base derived from the condensation of 2‐hydroxynaphthalene‐1‐carbaldehyde and 2‐picolylamine (=2‐(aminomethyl)pyridine), bipy=2,2′‐bypiridine, and phen=1,10‐phenanthroline) were synthesized and characterized. Complex 1 exhibits square‐planar geometry, and 2 and 3 exhibit square pyramidal geometry, where Schiff base and bipy/phen act as NNO and as NN donor ligands, respectively. CT (Calf thymus)‐DNA‐binding studies revealed that the complexes bind through intercalative mode and show good binding propensity (intrinsic binding constant Kb: 0.98×105, 2.22×105, and 2.67×105 M ?1 for 1 – 3 , resp.). The oxidative and hydrolytic DNA‐cleavage activity of these complexes has been studied by gel electrophoresis: all the complexes displayed chemical nuclease activity in the presence and absence of H2O2. From the kinetic experiments, hydrolytic DNA cleavage rate constants were determined as 2.48, 3.32, and 4.10 h?1 for 1 – 3 , respectively. It amounts to (0.68–1.14)×108‐fold rate enhancement compared to non‐catalyzed DNA cleavage, which is impressive. The complexes display binding and cleavage propensity to DNA in the order of 3 > 2 > 1 .  相似文献   

16.
To perform biological evaluations of newly-designed Pt(II) and Pd(II) complexes, the present study was conducted with targeted protein human serum albumin (HSA) and HCT116 cell line as model of human colorectal carcinoma. The binding of Pt(II) and Pd(II) complexes to HSA was analyzed using fluorescence spectroscopy and molecular docking. The thermal stability and alterations in the secondary structure of HSA in the presence of Pt(II) and Pd(II) complexes were investigated using the thermal denaturation method and circular dichroism (CD) spectroscopy. The cytotoxicity of the Pt(II) and Pd(II) complexes was studied against the HCT116 cell line using MTT assay. The binding analysis revealed that the fluorescence findings were well in agreement with docking results such that there is only one binding site for each complex on HSA. Binding constants of 8.7?×?103 M?1, 2.65?×?103 M?1, 0.3?×?103 M?1, and 4.4?×?103 M?1 were determined for Pd(II) and Pt(II) complexes (I–IV) at temperature of 25?°C, respectively. Also, binding constants of 1.9?×?103 M?1, 15.17?×?103 M?1, 1.9?×?103 M?1, and 13.1?×?103 M?1 were determined for Pd(II) and Pt(II) complexes (I–IV) at temperature of 37?°C, respectively. The results of CD and thermal denaturation showed that the molecular structure of HSA affected by interaction with Pt(II) and Pd(II) complexes is stable. Cytotoxicity studies represented the growth suppression effect of the Pt(II) and Pd(II) complexes toward the human colorectal carcinoma cell line. Therefore, the results suggest that the new designed Pt(II) and Pd(II) complexes are well promising candidates for use in cancer treatment, particularly for human colorectal cancer.

Communicated by Ramaswamy H. Sarma  相似文献   


17.
18.
The influence of water-soluble cationic meso-tetra-(4?N-oxyethylpyridyl)porphyrin (H2TOEPyP4) and it’s metallocomplexes with Ni, Cu, Co, and Zn on hydrodynamic and spectral behavior of DNA solutions has been studied by UV/Vis absorption and viscosity measurement. It was shown that the presence of planar porphyrins such as H2TOEPyP4, NiTOEPyP4, and СuTOEPyP4 leads to an increase in viscosity at relatively small concentrations, and then decrease to stable values. Such behavior is explained by intercalation of these porphyrins in DNA structure because the intercalation mode involves the insertion of a planar molecule between DNA base pairs which results in a decrease in the DNA helical twist and lengthening of the DNA. Further decrease of viscosity is explained by the saturation intercalation sites and occurs outside the binding mode. But, in the case of porphyrins with axial ligands such as CoTOEPyP4 and ZnTOEPyP4, the hydrodynamic parameters decrease, which is explained by self-stacking of these porphyrins in DNA surface. This data are proved by spectral measurements. The results obtained from titration experiments were used for calculation of binding parameters: the binding constant K b and the number of binding sites per base pair n. Obtained data reveal that K b varies between 3.4 and 5.4?×?106?M?1 for a planar porphyrins, a range typical for intercalation mode interactions, and 5.6?×?105?M?1 and 1.8?×?106?M?1 for axial porphyrins. In addition, the exclusion parameter n also testifies that at intercalation, (n~2) the adjacent base pairs are removed to place the planar molecules, and for outside binders to pack on the surface needs too few places (n~0.5–1). It is apparent that the binding is somewhat stronger at intercalation. The viscometric and spectrophotometric measurements are in good agreement.  相似文献   

19.
F G Walz  B Terenna  D Rolince 《Biopolymers》1975,14(4):825-837
Spectrophotometric binding studies were undertaken on the interaction of neutral red with native and heat-denatured, sonicated, calf thymus DNA in a 0.2M ionic strength buffer containing Tris–sodium acetate–potassium chloride at 25°C. The pKA of neutral red was found to be 6.81. At pH 5 the binding of protonated neutral red was complicated even at low concentration ratios of dye to DNA. In the pH range 7.5–8.5 the tight binding process could be studied and it was found that both protonated and free base species of neutral red significantly bind with DNA having association constants (in terms of polynucleotide phosphate) of 5.99 × 103 M?1 and 0.136 × 103 M?1, respectively, for native DNA and 7.48 × 103 M?1 and 0.938 × 103 M?1, respectively, for denatured DNA. The pKA value of the neutral red–DNA complexes were 8.46 for native DNA and 7.72 for denatured DNA. These results are discussed in terms of possible binding mechanisms.  相似文献   

20.
Green tea is rich in several polyphenols, such as (?)-epicatechin-3-gallate (ECG), (?)-epigallocatechin (EGC), and (?)-epigallocatechin-3-gallate (EGCG). The biological importance of these polyphenols led us to study the major polyphenol EGCG with human serum albumin (HSA) in an earlier study. In this report, we have compared the binding of ECG, EGC, and EGCG and the Cu(II) complexes of EGCG and ECG with HSA. We observe that the gallate moiety of the polyphenols plays a crucial role in determining the mode of interaction with HSA. The binding constants obtained for the different systems are 5.86?±?0.72?×?104 M?1 (K ECG-HSA), 4.22?±?0.15?×?104 M?1 (K ECG-Cu(II)-HSA), and 9.51?±?0.31?×?104 M?1 (K EGCG-Cu(II)-HSA) at 293?K. Thermodynamic parameters thus obtained suggest that apart from an initial hydrophobic association, van der Waals interactions and hydrogen bonding are the major interactions which held together the polyphenols and HSA. However, thermodynamic parameters obtained from the interactions of the copper complexes with HSA are indicative of the involvement of the hydrophobic forces. Circular dichroism and the Fourier transform infrared spectroscopic measurements reveal changes in α-helical content of HSA after binding with the ligands. Data obtained by fluorescence spectroscopy, displacement experiments along with the docking studies suggested that the ligands bind to the residues located in site 1 (subdomains IIA), whereas EGC, that lacks the gallate moiety, binds to the other hydrophobic site 2 (subdomain IIIA) of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号