首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In several bacterial species, the faithful completion of chromosome partitioning is known to be promoted by a conserved family of DNA translocases that includes Escherichia coli FtsK and Bacillus subtilis SpoIIIE. FtsK localizes at nascent division sites during every cell cycle and stimulates chromosome decatenation and the resolution of chromosome dimers formed by recA -dependent homologous recombination. In contrast, SpoIIIE localizes at sites where cells have divided and trapped chromosomal DNA in the membrane, which happens during spore development and under some conditions when DNA replication is perturbed. SpoIIIE completes chromosome segregation post-septationally by translocating trapped DNA across the membrane. Unlike E. coli , B. subtilis contains a second uncharacterized FtsK/SpoIIIE-like protein, SftA (formerly YtpS). We report that SftA plays a role similar to FtsK during each cell cycle but cannot substitute for SpoIIIE in rescuing trapped chromosomes. SftA colocalizes with FtsZ at nascent division sites but not with SpoIIIE at sites of chromosome trapping. SftA mutants divide over unsegregated chromosomes more frequently than wild-type unless recA is inactivated, suggesting that SftA, like FtsK, stimulates chromosome dimer resolution. Having two FtsK/SpoIIIE paralogues is not conserved among endospore-forming bacteria, but is highly conserved within several groups of soil- and plant-associated bacteria.  相似文献   

2.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   

3.
4.
Bates and Kleckner have recently proposed that bacterial cell division is a licensing agent for a subsequent initiation of DNA replication. They also propose that initiation mass for DNA replication is not constant. These two proposals do not take into account older data showing that initiation of DNA replication can occur prior to the division event. This critical analysis is derived from measurements of DNA replication during the division cycle in cells growing at different, and more rapid, growth rates. Furthermore, mutants impaired in division can initiate DNA synthesis. The data presented by Bates and Kleckner do not support the proposal that initiation mass is variable, and the proposed pattern of DNA replication during the division cycle of the K12 cells analysed is not consistent with prior data on the pattern of DNA replication during the division cycle.  相似文献   

5.
In eukaryotes, a family of six homologous minichromosome maintenance (MCM) proteins has a key function in ensuring that DNA replication occurs only once before cell division. Whereas all eukaryotes have six paralogues, in some Archaea a single protein forms a homomeric assembly. The complex is likely to function as a helicase during DNA replication. We have used electron microscopy to obtain a three-dimensional reconstruction of the full-length MCM from Methanobacterium thermoautotrophicum. Six monomers are arranged around a sixfold axis, generating a ring-shaped molecule with a large central cavity and lateral holes. The channel running through the molecule can easily accommodate double-stranded DNA. The crystal structure of the amino-terminal fragment of MCM and a model for the AAA+ hexamer have been docked into the map, whereas additional electron density suggests that the carboxy-terminal domain is located at the interface between the two domains. The structure suggests that the MCM complex is likely to act in a different manner to traditional hexameric helicases and is likely to bear more similarity to the SV40 large T antigen or to double-stranded DNA translocases.  相似文献   

6.
Faithful coordination between bacterial cell division and chromosome segregation in rod‐shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C‐terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.  相似文献   

7.
Abrupt changes in the concentration of intracellular calcium, through the mediation of calmodulin, is presumed to play an essential role in many molecular processes in eukaryotes including triggering cell cycle events. Although early studies failed to establish any role for calcium in the growth of bacteria, recent studies have demonstrated that bacteria have several calcium transport systems, and an intracellular concentration of free calcium identical to that of higher organisms, which appears to fluctuate during the cell cycle. Moreover, calmodulin-like proteins have been reported in bacteria, and the growth of E. coli is sensitive to calmodulin inhibitors. In this article we propose that a single flux of calcium, abruptly raising the intracellular concentration of free calcium, is responsible for the triggering in bacteria of the major cell cycle events, initiation of DNA replication, chromosome partition and cell division. We predict that major roles in this process will involve a bacterial calmodulin-like protein and a primitive cytoskeleton. The mechanism of triggering different cell cycle events by a single calcium flux is discussed.  相似文献   

8.
A series of well-orchestrated events help in the chromatin condensation and the formation of chromosomes. Apart from the formation of chromosomes, maintenance of their structure is important, especially for the cell division. The structural maintenance of chromosome (SMC) proteins, the non-SMC proteins and the SMC complexes are critical for the maintenance of chromosome structure. While condensins have roles for the DNA compaction, organization, and segregation, the cohesin functions in a cyclic manner through the cell cycle, as a “cohesin cycle.” Specific mechanisms maintain the architecture of the centromere, the kinetochore and the telomeres which are in tandem with the cell cycle checkpoints. The presence of chromosomal territories and compactness differences through the length of the chromosomes might have implications on selective susceptibility of specific chromosomes for induced genotoxicity.  相似文献   

9.
During the bacterial cell cycle, the processes of chromosome replication, DNA segregation, DNA repair and cell division are coordinated by precisely defined events. Tremendous progress has been made in recent years in identifying the mechanisms that underlie these processes. A striking feature common to these processes is that non-coding DNA motifs play a central part, thus 'sculpting' the bacterial chromosome. Here, we review the roles of these motifs in the mechanisms that ensure faithful transmission of genetic information to daughter cells. We show how their chromosomal distribution is crucial for their function and how it can be analysed quantitatively. Finally, the potential roles of these motifs in bacterial chromosome evolution are discussed.  相似文献   

10.
11.
12.
Summary Dunaliella bioculata, a naturally wall-less unicellular green alga, can be induced to divide synchronously when subjected to a 12 hours light-12 hours dark cycle. This rhythmic cell division will last for at least 15 days under a subsequent constant illumination. Synchronization can be improved when cells are submitted to 8 hours light-16 hours dark cycles under bright white light (10,000 lux). In these conditions the cell division gives rise to two daughter cells: The chronology of DNA, RNA and proteins synthesis has been studied during such a synchronized cell cycle. DNA synthesis begins 4 hours before the outset of cell division and is completed after two hours in the dark; in difference, illumination seems necessary to the synthesis of RNA and proteins.  相似文献   

13.
14.
The harmonious growth and cell-to-cell uniformity of steady-state bacterial populations indicate the existence of a well-regulated cell cycle, responding to a set of internal signals. In Escherichia coli, the key events of this cycle are the initiation of DNA replication, nucleoid segregation and the initiation of cell division. The replication initiator is the DnaA protein. In nucleoid segregation, the MukB protein, required for proper partitioning, may be a member of the myosin-kinesin superfamily of mechanoenzymes. In cell division, the FtsZ protein has a tubulin motif, is a GTPase and polymerizes in a ring around midcell during septation; the FtsA protein has an actin-like structure. The nature of the internal signals triggering these events is not known but candidates include cell mass, the superhelical density of the chromosome and the concentration of two regulatory nucleotides, cyclic AMP and ppGpp. The involvement of cytoskeletal-like proteins in key cycle events encourages the notion of a fundamental biological unity in cell cycle regulation in all organisms.  相似文献   

15.
In Bacillus subtilis, chromosome dimers that block complete segregation of sister chromosomes arise in about 15% of exponentially growing cells. Two dedicated recombinases, RipX and CodV, catalyze the resolution of dimers by site-specific recombination at the dif site, which is located close to the terminus region on the chromosome. We show that the two DNA translocases in B. subtilis, SftA and SpoIIIE, synergistically affect dimer resolution, presumably by positioning the dif sites in close proximity, before or after completion of cell division, respectively. Furthermore, we observed that both recombinases, RipX and CodV, assemble on the chromosome at the dif site throughout the cell cycle. The preassembly of recombinases probably ensures that dimer resolution can occur rapidly within a short time window around cell division.  相似文献   

16.
F plasmid replication during the Escherichia coli division cycle was investigated by using the membrane-elution technique to produce cells labeled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The F plasmid replicated, like the minichromosome, during a restricted portion of the bacterial division cycle; i.e., F plasmid replication is cell-cycle specific. The F plasmid replicated at a different time during the division cycle than a minichromosome present in the same cell. F plasmid replication coincided with doubling in the rate of enzyme synthesis from a plasmid-encoded gene. When the cell cycle age of replication of the F plasmid was determined over a range of growth rates, the cell size at which the F plasmid replicated followed the same rules as did replication of the bacterial chromosome--initiation occurred when a constant mass per origin was achieved--except that the initiation mass per origin for the F plasmid was different from that for the chromosome origin. In contrast, the high-copy mini-R6K plasmid replicated throughout the division cycle.  相似文献   

17.
The Schaechter-Bentzon-Maal?e (SBM) experiment, performed more than 40 years ago, provides an important lesson for the analysis of the eukaryotic cell cycle. Before this experiment, temperature shifts had been used to synchronize bacteria and determine the pattern of DNA synthesis during the bacterial division cycle. These experiments indicated that DNA replication occurred during a fraction of the division cycle with gaps before and after DNA synthesis, a pattern similar to the eukaryotic division cycle. The SBM experiment studied DNA replication during the division cycle by labeling an unperturbed culture with a short pulse of tritiated thymidine. All cells were found to be labeled, indicating that unperturbed cells synthesize DNA throughout the division cycle. Thus, the SBM experiment was a control experiment demonstrating that artifacts can be introduced by synchronization methods. The idea of an control experiment under unperturbed conditions is proposed for the analysis of data on cell-cycle-specific gene expression in yeast and mammalian cells.  相似文献   

18.
The Dps protein, a member of the ferritin family, contributes to DNA protection during oxidative stress and plays a central role in nucleoid condensation during stationary phase in unicellular eubacteria. Genome searches revealed the presence of three Dps-like orthologues within the genome of the Gram-positive bacterium Streptomyces coelicolor . Disruption of the S. coelicolor dpsA , dpsB and dpsC genes resulted in irregular condensation of spore nucleoids in a gene-specific manner. These irregularities are correlated with changes to the spacing between sporulation septa. This is the first example of these proteins playing a role in bacterial cell division. Translational fusions provided evidence for both developmental control of DpsA and DpsC expression and their localization to sporogenic compartments of aerial hyphae. In addition, various stress conditions induced expression of the Dps proteins in a stimulus-dependent manner in vegetative hyphae, suggesting stress-induced, protein-specific protective functions in addition to their role during reproductive cell division. Unlike in other bacteria, the S. coelicolor Dps proteins are not induced in response to oxidative stress.  相似文献   

19.
P1 prophage replication during the Escherichia coli division cycle has been analyzed by using the membrane-elution technique to produce cells labelled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive prophage DNA. P1 prophage replicates during a restricted portion of the bacterial division cycle, like the minichromosome, but at a time during the division cycle different than the time at which the minichromosome replicates in the same cell. A high-copy mini-R6K plasmid present in the same cell replicates throughout the division cycle. Over a wide range of growth rates, the P1 prophage replicates approximately one-half generation after the minichromosome replicates. Thus, the mechanisms underlying P1 replication are similar to those for the F plasmid and the chromosome. Replication occurs when some property related to cell size or cell mass reaches a constant value per origin.  相似文献   

20.
The relationship between events during the bacterial cell cycle has been the subject of frequent debate. While early models proposed a relatively rigid view in which DNA replication was inextricably coupled to attainment of a specific cell mass, and cell division was triggered by the completion of chromosome replication, more recent data suggest these models were oversimplified. Instead, an intricate set of intersecting, and at times opposing, forces coordinate DNA replication, cell division, and cell growth with one another, thereby ensuring the precise spatial and temporal control of cell cycle events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号