首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Poly-3-hydroxyalkanoates [P(3HA)s] are biologically produced polyesters that have attracted much attention as biodegradable polymers that can be produced from biorenewable resources. These polymers have many attractive properties for use as bulk commodity plastics, fishing lines, and medical uses that are dependent on the repeating unit structures. Despite the readily apparent benefits of using P(3HA)s as replacements for petrochemical-derived plastics, the use and distribution of P(3HA)s have been limited by their cost of production. This problem is currently being addressed by the engineering of enzymes involved in the production of P(3HA)s. Polyhydroxyalkanoate (PHA) synthase (PhaC) enzymes, which catalyze the polymerization of 3-hydroxyacyl-CoA monomers to P(3HA)s, were subjected to various forms of protein engineering to improve the enzyme activity or substrate specificity. This review covers the recent history of PHA synthase engineering and also summarizes studies that have utilized engineered PHA synthases.  相似文献   

2.
Polyhydroxyalkanoates are biodegradable polymers produced by prokaryotic organisms from renewable resources. The production of PHAs by submerged fermentation processes has been intensively studied over the last 30 years. In recent years, alternative strategies have been proposed, such as the use of solid-state fermentation or the production of PHAs in transgenic plants. This paper gives an overview of submerged and solid-state fermentation processes used to produce PHAs from waste materials and by-products. The use of these low-cost raw materials has the potential to reduce PHA production costs, because the raw material costs contribute a significant part of production costs in traditional PHA production processes.  相似文献   

3.
Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic.   总被引:18,自引:0,他引:18  
Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.  相似文献   

4.
聚羟基脂肪酸酯(PHA)是一类由微生物合成的、生物可再生、生物可降解、具有多种材料学性能的高分子聚合物,在很多领域有着广泛的应用前景。以下从辅酶工程、代谢工程、微氧生产等方面综述了微生物法生产PHA的研究进展,并对利用PHA合成基因提高基因工程菌的代谢潜能进行了讨论。  相似文献   

5.
As concerns increase regarding sustainable industries and environmental pollutions caused by the accumulation of non-degradable plastic wastes, bio-based polymers, particularly biodegradable plastics, have attracted considerable attention as potential candidates for solving these problems by substituting petroleum-based plastics. Among these candidates, polyhydroxyalkanoates (PHAs), natural polyesters that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and material properties similar to those of commodity plastics. Accordingly, substantial efforts have been made to gain a better understanding of mechanisms related to the biosynthesis and properties of PHAs and to develop natural and recombinant microorganisms that can efficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications.Recent advances in biotechnology, including those related to evolutionary engineering, synthetic biology, and systems biology, can provide efficient and effective tools and strategies that reduce time, labor, and costs to develop microbial platform strains that produce desired chemicals and materials. Adopting these technologies in a systematic manner has enabled microbial fermentative production of non-natural polyesters such as poly(lactate) [PLA], poly(lactate-co-glycolate) [PLGA], and even polyesters consisting of aromatic monomers from renewable biomass-derived carbohydrates, which can be widely used in current chemical industries.In this review, we present an overview of strain development for the production of various important natural PHAs, which will give the reader an insight into the recent advances and provide indicators for the future direction of engineering microorganisms as plastic cell factories. On the basis of our current understanding of PHA biosynthesis systems, we discuss recent advances in the approaches adopted for strain development in the production of non-natural polyesters, notably 2-hydroxycarboxylic acid-containing polymers, with particular reference to systems metabolic engineering strategies.  相似文献   

6.
Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms. PHAs have been attracting considerable attention as biodegradable substitutes for conventional polymers. To reduce their production cost, a great deal of effort has been devoted to developing better bacterial strains and more efficient fermentation/recovery processes. The use of mixed cultures and cheap substrates can reduce the production cost of PHA. Accumulation of PHA by mixed cultures occurs under transient conditions mainly caused by intermittent feeding and variation in the electron donor/acceptor presence. The maximum capacity for PHA storage and the PHA production rate are dependent on the substrate and the operating conditions used. This work reviews the development of PHA research. Aspects discussed include metabolism and various mechanisms for PHA production by mixed cultures; kinetics of PHA accumulation and conversion; effects of carbon source and temperature on PHA production using mixed cultures; PHA production process design; and characteristics of PHA produced by mixed cultures.  相似文献   

8.
Microbial production of biopolymers derived from renewable substrates and waste streams reduces our heavy reliance on petrochemical plastics. One of the most important biodegradable polymers is the family of polyhydroxyalkanoates (PHAs), naturally occurring intracellular polyoxoesters produced for decades by bacterial fermentation of sugars and fatty acids at the industrial scale. Despite the advances, PHA production still suffers from heavy costs associated with carbon substrates and downstream processing to recover the intracellular product, thus restricting market positioning. In recent years, model-aided metabolic engineering and novel synthetic biology approaches have spurred our understanding of carbon flux partitioning through competing pathways and cellular resource allocation during PHA synthesis, enabling the rational design of superior biopolymer producers and programmable cellular lytic systems. This review describes these attempts to rationally engineering the cellular operation of several microbes to elevate PHA production on specific substrates and waste products. We also delve into genome reduction, morphology, and redox cofactor engineering to boost PHA biosynthesis. Besides, we critically evaluate engineered bacterial strains in various fermentation modes in terms of PHA productivity and the period required for product recovery.  相似文献   

9.
10.
Aside from their importance to the survival and general welfare of mankind, agriculture and its related industries produce large quantities of feedstocks and coproducts that can be used as inexpensive substrates for fermentative processes. Successful adoption of these materials into commercial processes could further the realization of a biorefinery industry based on agriculturally derived feedstocks. One potential concept is the production of poly(hydroxyalkanoate) (PHA) polymers, a family of microbial biopolyesters with a myriad of possible monomeric compositions and performance properties. The economics for the fermentative production of PHA could benefit from the use of low-cost agricultural feedstocks and coproducts. This mini-review provides a brief survey of research performed in this area, with specific emphasis on studies describing the utilization of intact triacylglycerols (vegetable oils and animal fats), dairy whey, molasses, and meat-and-bone meal as substrates in the microbial synthesis of PHA polymers.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

11.
Due to increasing concerns about environmental problems, climate change and limited fossil resources, bio-based production of chemicals and polymers is gaining attention as one of the solutions to these problems. Polyhydroxyalkanoates (PHAs) are polyesters that can be produced by microbial fermentation. PHAs are synthesized using monomer precursors provided from diverse metabolic pathways and are accumulated as distinct granules inside the cells. On the other hand, most so-called bio-based polymers including polybutylene succinate, polytrimethylene terephthalate, and polylactic acid (PLA) are synthesized by a chemical process using monomers produced by fermentation. PLA, an attractive biomass-derived plastic, is currently synthesized by heavy metal-catalyzed ring opening polymerization of L-lactide that is made from fermentation-derived L-lactic acid. Recently, a complete biological process for the production of PLA and PLA copolymers from renewable resources has been developed by direct fermentation of recombinant bacteria employing PHA biosynthetic pathways coupled with a novel metabolic pathway. This could be accomplished by establishing a pathway for generating lactyl-CoA and engineering PHA synthase to accept lactyl-CoA as a substrate combined with systems metabolic engineering. In this article, we review recent advances in the production of lactate-containing homo- and co-polyesters. Challenges remaining to efficiently produce PLA and its copolymers and strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are discussed.  相似文献   

12.
Polyhydroxyalkanoates (PHA) constitute a group of microbial biopolyesters with important ecosystem functions and a high biotechnological potential. During the past decade, the rapid development of new molecular and microscopic techniques resulted in novel insights into the ecology of PHA‐producing bacteria in aquatic and terrestrial microenvironments. Ecosystems showing fluctuating availability of carbon or transient limitation of essential nutrients, e.g. the rhizosphere of plants or estuarine sediments, contain a broad number of various PHA producers. PHA‐producing microorganisms show a widespread phylogenetic diversity and are often characterized by a symbiotic or syntrophic life style. PHA are already produced commercially in large‐scale fermentation. However, they have to compete economically with petrol‐based polymers. Hence, the development of low‐cost production strategies on the basis of diverse renewable materials is a crucial challenge. Ecological knowledge is required for these developments, which links both parts of the review together. The article highlights how a better understanding of the ecology of PHA‐producing microorganisms can lead to a broader application of microbial biopolymers on the basis of sustainable production processes. These processes have to be evaluated by means of life cycle assessment and Cleaner Production studies prior to their industrial implementation.  相似文献   

13.
Polyhydroxyalkanoates (PHAs) are a class of biopolyesters that are synthesized intracellularly by microorganisms, mainly by different genera of eubacteria. These biopolymers have diverse physical and chemical properties that also classify them as biodegradable in nature and make them compatible to living systems. In the last two decades or so, PHAs have emerged as potential useful materials in the medical field for different applications owing to their unique properties. The lower acidity and bioactivity of PHAs confer them with minimal risk compared to other biopolymers such as poly-lactic acid (PLA) and poly-glycolic acid (PGA). Therefore, the versatility of PHAs in terms of their non-toxic degradation products, biocompatibility, desired surface modifications, wide range of physical and chemical properties, cellular growth support, and attachment without carcinogenic effects have enabled their use as in vivo implants such as sutures, adhesion barriers, and valves to guide tissue repair and in regeneration devices such as cardiovascular patches, articular cartilage repair scaffolds, bone graft substitutes, and nerve guides. Here, we briefly describe some of the most recent innovative research involving the use of PHAs in medical applications. Microbial production of PHAs also provides the opportunity to develop PHAs with more unique monomer compositions economically through metabolic engineering approaches. At present, it is generally established that the PHA monomer composition and surface modifications influence cell responses.PHA synthesis by bacteria does not require the use of a catalyst (used in the synthesis of other polymers), which further promotes the biocompatibility of PHA-derived polymers.  相似文献   

14.
Polyhydroxyalkanoates (PHAs)are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms.PHAs have attracted considerable attention as biodegradable substitutes for conventional polymers.Until now,however,industrial production of PHAs has encountered only limited success.The main barrier to the replacement of synthetic plastics by PHAs has been the higher cost.The use of mixed cultures and renewable sources obtained from waste organic carbon can substantially decrease the cost of PHA and increase their market potential.This work reviews two main methods of PHA production by mixed cultures,anaerobicaerobic processing and aerobic transient feeding processing,and analyzed the metabolic and effective factors.  相似文献   

15.
Growing concerns over conventional plastic materials and their detrimental effects on the environment have paved the way for exploring alternative sources for the production of bioplastics/biodegradable polymers. Polyhydroxyalkanoates (PHAs), being eco-friendly, biodegradable and renewable, with material properties comparable to conventional plastics, have gained significant attention for research and commercial ventures. Bacteria are reported to be the most efficient microbes in accumulating PHAs, where productivity up to 3.2 g L?1 h?1 can be attained. PHA production from a bacterial system, however, is found to be expensive. Cyanobacteria are now considered as prospective photoautotrophic systems with many advantages over higher plants for low-cost production of PHAs. Cyanobacteria have the potential to synthesize polyhydroxybutyrate (PHB) under photoautotrophic and chemoheterotrophic conditions using carbon substrates like glucose, acetate, and maltose, individually or in combination. Several studies have shown improvement in PHA yield in cyanobacteria by limiting nutrients and/or addition of various precursors. Under optimized conditions, PHB and P(3HB-co-3HV) co-polymer accumulation can reach up to 85 and 77% of dry cell weight (dcw) with a productivity of 13.3 and 1.6 mg L?1 h?1, respectively. Despite the strategic increase in the potential of PHA accumulation in cyanobacteria, the productivity does not suffice for economic production. Therefore, economically feasible production of PHA in cyanobacteria might be attained by technological improvements in various aspects like improvement in mass cultivation techniques, alternate low-cost organic substrates, use of various metabolic inhibitors to stimulate intracellular accumulation, and by suppression and overexpression of specific biosynthetic pathways by genetic engineering approaches.  相似文献   

16.
The use of biodegradable polymers is one of the key solution to environmental problems and the development of biocompatible material. The impact of such a large commercial opportunity is one of the primary reasons for much interest in the field of microbial polyester, polyhydroxyalkanoic acid (PHA). Its valuable properties of biodegradability, biocompatibility and thermoplasticity have attracted considerable commercial interest, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has been launched as the first market product. Recent advances in molecular genetics and microbial physiology of PHA biosynthesis have been uncovering the biosynthetic mechanics at molecular level, and extensive efforts for the developments of practical applications and cost-effective mass production of PHA will profell the commercialization of PHA towards the commodity market for biodegradable plastics. The biosynthesis of new members of PHA family with new monomer or unusual composition will also lead to the biotechnological production of tailor-made biopolymer for various applications.  相似文献   

17.
18.
Actin is the principal component of the cytoskeleton, a structure that can be disassembled and reassembled in a matter of seconds in vivo. The state of assembly of actin in vivo is primarily regulated by one or more actin binding proteins (ABPs). Typically, the actions of ABPs have been studied one by one, however, we propose that multiple ABPs, acting cooperatively, may be involved in the control of actin filament length. Cofilin and DNase I are two ABPs that have previously been demonstrated to form a ternary complex with actin in vitro. This is the first report to demonstrate their co-localisation in vivo, and differences in their distributions. Our observations strongly suggest a physiological role for higher order complexes of actin in regulation of cytoskeletal assembly during processes such as cell division.  相似文献   

19.
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome‐targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β‐oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.  相似文献   

20.
Actin is the principal component of the cytoskeleton, a structure that can be disassembled and reassembled in a matter of seconds in vivo. The state of assembly of actin in vivo is primarily regulated by one or more actin binding proteins (ABPs). Typically, the actions of ABPs have been studied one by one, however, we propose that multiple ABPs, acting cooperatively, may be involved in the control of actin filament length. Cofilin and DNase I are two ABPs that have previously been demonstrated to form a ternary complex with actin in vitro. This is the first report to demonstrate their co-localisation in vivo, and differences in their distributions. Our observations strongly suggest a physiological role for higher order complexes of actin in regulation of cytoskeletal assembly during processes such as cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号