首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
4.
5.
6.
Plastids contain an NADH dehydrogenase complex (Ndh complex) homologous to the mitochondrial complex I (EC 1.6.5.3). In this work, we have analysed the changes in the Ndh complex during ripening of pepper (Capsicum annum L., cv. Maor) and tomato (Lycopersicon esculentum Mill., cv. Marglobe) fruits. The Ndh complex was mainly present in the outer pericarp of tomato fruits, whereas it was evenly distributed in the pericarp of pepper. In both kinds of fruit we observed a decrease in the total amount of Ndh complex from the green to the red stage of development. This decrease corresponds to parallel decreases in the content and activity of the complex in plastids during the transition from chloroplasts to chromoplasts. Levels of plastidial quinol peroxidase activity were also higher during the first stages of tomato fruit development than during the latter stages of ripening. However, when referred to total plastid protein, the amount and activity of the Ndh complex in chloroplasts isolated from green fruits was higher than in chloroplasts isolated from leaves. These results strongly suggest that function of the Ndh complex, probably related to a plastidial electron transport chain, can be important during the first stages of fruit development.  相似文献   

7.

Background and Aims

There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase.

Methods

Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices.

Key results

At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts.

Conclusions

These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.  相似文献   

8.
Ribosome development was followed by electron microscopy and gel electrophoresis of ribosomal (r)RNAs in the plastids of fully expanded fruits of Capsicum annuum L. during ripening. Chloroplasts from young Capsicum leaves were used as a structural and electrophoretic standard. Four stages were distinguished on the basis of colour changes during fruit ripening. Chloroplasts of the green fruit had a lower content of 16S and 23S rRNAs than leaf chloroplasts. They contained only a few ribosomes, some more discrete ribosomal particles, and the contrast of ribosomal structures was faint. From the outset of ripening, most of the ribosomal structures in the plastid stroma disappeared. A continuous decrease in plastid rRNAs occurred during ripening. Fully differentiated chromoplasts of the red fruit did not contain rRNAs or ribosomes. Throughout plastid development, DNA nucleoids were evident and there was only a small decrease in the DNA peak on electrophoretograms. The loss of ribosomes during the chloroplast-to-chromoplast conversion in Capsicum fruit is discussed in relation to the variations in pigments and enzymic systems in both plastid types.Abbreviations Developmental stages of leaves and fruits: A four-week-old green leaf - B green fruit - C brownish fruit - D orange fruit - E red fruit - ptRNA, DNA plastid RNA - DNA; rRNA ribosomal RNA  相似文献   

9.
We have analyzed DNA methylation of plastid DNA from fully ripened red fruits, green mature fruits, and green leaves of tomato (Lycopersicon esculentum var. Firstmore). Essentially identical restriction profiles were obtained between chromoplast and chloroplast DNAs by EcoRI digestion. BstNI/EcoRII and HpaII/MspI are pairs of isoschizomers that can discriminate between methylated and unmethylated DNAs. These endonucleases produced different restriction patterns of plastid DNAs from tomato fruits compared to tomato leaves. Moreover, we have found from Southern blots that methylation was not detected in DNA fragments containing certain genes that are actively expressed in chromoplasts, whereas DNA fragments bearing genes that are barely transcribed in chromoplasts are methylated.  相似文献   

10.
Transgenic chloroplasts offer unique advantages in plant biotechnology, including high-level foreign protein expression, absence of epigenetic effects, and gene containment due to the lack of transgene transmission through pollen. However, broad application of plastid genome engineering in biotechnology has been largely hampered by both the lack of chloroplast transformation systems for major crop plants and the usually low plastid gene expression levels in nongreen tissues such as fruits, tubers, and other storage organs. Here we describe the development of a plastid transformation system for tomato, Lycopersicon esculentum. This is the first report on the generation of fertile transplastomic plants in a food crop with an edible fruit. We show that chromoplasts in the tomato fruit express the transgene to approximately 50% of the expression levels in leaf chloroplasts. Given the generally very high foreign protein accumulation rates that can be achieved in transgenic chloroplasts (>40% of the total soluble protein), this system paves the way to efficient production of edible vaccines, pharmaceuticals, and antibodies in tomato.  相似文献   

11.
Plastid DNA was isolated from the chloroplasts of tomato (Lycopersicon esculentum var Traveler 76) leaves and the chromoplasts of ripe tomato fruit. Comparisons of the two DNAs were made by restriction endonuclease analysis using PvuII, HpaI, and Bg1I. No differences in the electrophoretic banding patterns of the restricted plastid DNAs were detected, indicating that no major rearrangements, losses, or gains of plastid DNA accompany the transition from chloroplast to chromoplast.  相似文献   

12.
Mutant alleles at the suffulta locus of tomato dramatically affect the pattern of plastid division throughout the plant, resulting in few, greatly enlarged chloroplasts in leaf and stem cells. suffulta plants are compromised in growth and have distinctly pale stems. The green developing tomato fruit are generally paler compared with the wild type, but ripe red fruit are much more similar in colour and pigment content. By using plastid-targeted green fluorescent protein, the underlying plastid phenotypes in the ripening suffulta fruit reveal that enlarged chlorophyll-containing chloroplasts degenerate and give rise to a wild type-like population of chromoplasts in ripe fruit by a process of plastid budding and fragmentation, resulting in a heterogeneous population of plastid-derived structures which eventually become chromoplasts. In stomatal guard cells, plastid-derived structures lacking chlorophyll, but containing GFP, are also observed, especially in guard cells which completely lack normal chloroplasts. How this novel 'replication' process in suffulta relates to conventional plastid division and stromule formation is discussed.  相似文献   

13.
14.
Metabolite-specific transporters are present in the inner membrane of the plastid envelope allowing transport between the plastid and other cellular compartments. A plastidic glucose translocator (pGlcT) in leaf mesophyll cells transports glucose from chloroplast stroma to the cytosol after amylolytic starch degradation at night. Here we report the cloning of a pGlcT expressed in olive fruits (Olea europea L.). Our results showed high expression of pGlcT in non-green heterotrophic fruit tissues. Expression of pGlcT in olive fruits was somewhat higher compared to leaves, and continued until the black, mature fruit stage. We cloned part of tomato pGlcT and found that it is also expressed throughout fruit development implying a role for pGlcT in heterotrophic tissues. Light and electron microscopic characterization of plastid structural changes during olive fruit ripening revealed the transition of chloroplast-like plastids into starchless, non-green plastids; in mature olive fruits only chromoplasts were present. Together, these findings suggest that olive pGlcT is abundant in chromoplasts during structural changes, and provide evidence that pGlcT may play different physiological roles in ripening fruits and possibly in other non-photosynthetic organs.  相似文献   

15.
Three pigment lines of the tomato cultivar ‘Pearson’ with isogenic backgrounds were studied to determine the relationship between certain carotenoids and the development of chromoplasts during fruit ripening. The lines were normal red (r+/r+), in which about 90% of the carotenoids in the ripe fruit is lycopene; high-beta (B/B) mutant, in which beta-carotene is the major pigment and the mature fruit color is deep orange ; and low-pigment (r/r) mutant, in which carotenoids are drastically reduced and the mature fruit is pale yellow-orange. This paper reports pigment analyses for the three lines and the ultrastructural changes in plastids of the two mutant lines. Very young, pale green fruits contain proplastids with limited lamellar structure. As the fruits reach the mature green stage, the plastids in all three lines develop into typical chloroplasts. Differences in pigment content and in ultrastructure among the lines are not apparent until ripening commences. In the low-pigment mutant carotenoids are reduced as ripening progresses and no carotenoid crystalloids are formed. As chlorophyll decreases the fruits become pale yellow. The grana become disorganized and the thylakoids appear to separate at the partitions and tend to be arrayed in lines, some still with their ends overlapping. Globules increase slightly in number. In the high-beta mutant the grana break down during ripening and globules increase greatly in size and number. Beta-carotene, presumed to be largely in the globules, crystallizes into elongated or druse type forms which may distort the globules. The crystals may affect the shape of the chromoplasts; long crystals may extend the length of the plastid to over 15 μ. Thylakoid plexes with a regular lattice structure sometimes occur in the chromoplasts of the high-beta mutant. Granules resembling aggregations of phytoferritin particles occur in the chromoplasts of both of these mutants.  相似文献   

16.
17.
18.
Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimize the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids.  相似文献   

19.
The enzyme geranylgeranylpyrophosphate synthase (GGPPS), which plays a key role in the synthesis of diterpene compounds, carotenoids and higher terpenoids, has been localized in Capsicum fruit cells by ultrastructural immunogold cytochemistry, after conventional chemical fixation of tissues and quick-freezing followed by freeze-substitution of isolated chloroplasts and chromoplasts. In agreement with previous biochemical studies on cell fractions, the enzyme seems restricted to the plastid compartment. Together with the phenotypic changes of the fruit and the ultrastructural modifications of the plastids during the transition of chloroplasts to chromoplasts, the amount of immunolabelling over plastid sections increases more than a ten-fold factor in the course of fruit ripening. In chemically fixed tissues, the gold labelling of chloroplasts is very faint and erratically localized whereas in further transition stages, and in chromoplasts, most of the gold particles surround the developing plastoglobuli, which are the characteristic carotenoid-bearing structures. Because of the very low and inconstant labelling of chloroplasts in green fruits after chemical fixation, cryofixed and acetone freeze-substituted purified plastids were used as a model system for an accurate localization of the enzyme in these organelles. Quick-freezing in buffered sucrose by slam-freezing on a cold copper block results in optimal preservation of the plastids and improved labelling of GGPPS. The enzyme is not scattered at random throughout the stroma. Gold particles are concentrated in distinct stroma regions, and especially at the sites of initiation of stroma globuli which are the early structural event of carotenoid accumulation. A few gold particles are also present on the margins of thylakoids and, presumably, on the plastid envelope. This paper reports further evidence of the central role of the plastid compartment in the production of C20 isoprenoid intermediates in the plant cell, shows the spatial relationship of the enzyme geranylgeranylpyrophosphate synthase with the plastid substructures and the existence of several GGPPS pools within the plastids. It demonstrates the interest of cryo-methods for an accurate localization of various enzymes in plant cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号