首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SURVEY AND SUMMARY: The applications of universal DNA base analogues   总被引:2,自引:2,他引:0  
A universal base analogue forms ‘base pairs’ with each of the natural DNA/RNA bases with little discrimination between them. A number of such analogues have been prepared and their applications as biochemical tools investigated. Most of these analogues are non-hydrogen bonding, hydrophobic, aromatic ‘bases’ which stabilise duplex DNA by stacking interactions. This review of the literature of universal bases (to 2000) details the analogues investigated, and their uses and limitations are discussed.  相似文献   

2.
The introduction of cationic 5-(ω-aminoalkyl)-2′-deoxypyrimidines into duplex DNA has been shown to induce DNA bending. In order to understand the energetic and hydration contributions for the incorporation of a cationic side chain in DNA a combination of spectroscopy, calorimetry and density techniques were used. Specifically, the temperature unfolding and isothermal formation was studied for a pair of duplexes with sequence d(CGTAGUCG TGC)/d(GCACGACTACG), where U represents 2′-deoxyuridine (‘control’) or 5-(3-aminopropyl)-2′-deoxyuridine (‘modified’). Continuous variation experiments confirmed 1:1 stoichiometries for each duplex and the circular dichroism spectra show that both duplexes adopted the B conformation. UV and differential scanning calorimetry melting experiments reveal that each duplex unfolds in two-state transitions. In low salt buffer, the ‘modified’ duplex is more stable and unfolds with a lower endothermic heat and lower release of counterion and water. This electrostatic stabilization is entropy driven and disappears at higher salt concentrations. Complete thermodynamic profiles at 15°C show that the favorable formation of each duplex results from the compensation of a favorable exothermic heat with an unfavorable entropy contribution. However, the isothermal profiles yielded a differential enthalpy of 8.8 kcal/mol, which is 4.3 kcal/mol higher than the differential enthalpy observed in the unfolding profiles. This indicates that the presence of the aminopropyl chain induces an increase in base stacking interactions in the modified single strand and a decrease in base stacking interactions in the modified duplex. Furthermore, the formation of the ‘control’ duplex releases water while the ‘modified’ duplex takes up water. Relative to the control duplex, formation of the modified duplex at 15°C yielded a marginal differential ΔG° term, positive ΔΔHITC–Δ(TΔS) compensation, negative ΔΔV and a net release of counterions. The opposite signs of the differential enthalpy–entropy compensation and differential volume change terms show a net uptake of structural water around polar and non-polar groups. This indicates that incorporation of the aminopropyl chain induces a higher exposure of aromatic bases to the solvent, which may be consistent with a small and local bend in the ‘modified’ duplex.  相似文献   

3.
BLM and WRN, the products of the Bloom’s and Werner’s syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3′→5′ polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded ‘bubble’, as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each ‘arm’ of the 4-way junction is blunt-ended. Surprisingly, a 3′-tailed duplex, a standard substrate for 3′→5′ helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3′-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom’s or Werner’s syndrome.  相似文献   

4.
5.
Mummified remains have long attracted interest as a potential source of ancient DNA. However, mummification is a rare process that requires an anhydrous environment to rapidly dehydrate and preserve tissue before complete decomposition occurs. We present the whole-genome sequences (3.94 X) of an approximately 1600-year-old naturally mummified sheep recovered from Chehrābād, a salt mine in northwestern Iran. Comparative analyses of published ancient sequences revealed the remarkable DNA integrity of this mummy. Hallmarks of postmortem damage, fragmentation and hydrolytic deamination are substantially reduced, likely owing to the high salinity of this taphonomic environment. Metagenomic analyses reflect the profound influence of high-salt content on decomposition; its microbial profile is predominated by halophilic archaea and bacteria, possibly contributing to the remarkable preservation of the sample. Applying population genomic analyses, we find clustering of this sheep with Southwest Asian modern breeds, suggesting ancestry continuity. Genotyping of a locus influencing the woolly phenotype showed the presence of an ancestral ‘hairy’ allele, consistent with hair fibre imaging. This, along with derived alleles associated with the fat-tail phenotype, provides genetic evidence that Sasanian-period Iranians maintained specialized sheep flocks for different uses, with the ‘hairy’, ‘fat-tailed’-genotyped sheep likely kept by the rural community of Chehrābād''s miners.  相似文献   

6.
Combining biophysical measurements on T4 bacteriophage replication complexes with detailed structural information can illuminate the molecular mechanisms of these ‘macromolecular machines’. Here we use the low energy circular dichroism (CD) and fluorescent properties of site-specifically introduced base analogues to map and quantify the equilibrium binding interactions of short (8 nts) ssDNA oligomers with gp32 monomers at single nucleotide resolution. We show that single gp32 molecules interact most directly and specifically near the 3′-end of these ssDNA oligomers, thus defining the polarity of gp32 binding with respect to the ssDNA lattice, and that only 2–3 nts are directly involved in this tight binding interaction. The loss of exciton coupling in the CD spectra of dimer 2-AP (2-aminopurine) probes at various positions in the ssDNA constructs, together with increases in fluorescence intensity, suggest that gp32 binding directly extends the sugar-phosphate backbone of this ssDNA oligomer, particularly at the 3′-end and facilitates base unstacking along the entire 8-mer lattice. These results provide a model (and ‘DNA map’) for the isolated gp32 binding to ssDNA targets, which serves as the nucleation step for the cooperative binding that occurs at transiently exposed ssDNA sequences within the functioning T4 DNA replication complex.  相似文献   

7.
XPC/Rad4 initiates eukaryotic nucleotide excision repair on structurally diverse helix-destabilizing/distorting DNA lesions by selectively ‘opening’ these sites while rapidly diffusing along undamaged DNA. Previous structural studies showed that Rad4, when tethered to DNA, could also open undamaged DNA, suggesting a ‘kinetic gating’ mechanism whereby lesion discrimination relied on efficient opening versus diffusion. However, solution studies in support of such a mechanism were lacking and how ‘opening’ is brought about remained unclear. Here, we present crystal structures and fluorescence-based conformational analyses on tethered complexes, showing that Rad4 can indeed ‘open’ undamaged DNA in solution and that such ‘opening’ can largely occur without one or the other of the β-hairpin motifs in the BHD2 or BHD3 domains. Notably, the Rad4-bound ‘open’ DNA adopts multiple conformations in solution notwithstanding the DNA’s original structure or the β-hairpins. Molecular dynamics simulations reveal compensatory roles of the β-hairpins, which may render robustness in dealing with and opening diverse lesions. Our study showcases how fluorescence-based studies can be used to obtain information complementary to ensemble structural studies. The tethering-facilitated DNA ‘opening’ of undamaged sites and the dynamic nature of ‘open’ DNA may shed light on how the protein functions within and beyond nucleotide excision repair in cells.  相似文献   

8.
We report a crystal structure that shows an antibiotic that extracts a nucleobase from a DNA molecule ‘caught in the act’ after forming a covalent bond but before departing with the base. The structure of trioxacarcin A covalently bound to double-stranded d(AACCGGTT) was determined to 1.78 Å resolution by MAD phasing employing brominated oligonucleotides. The DNA–drug complex has a unique structure that combines alkylation (at the N7 position of a guanine), intercalation (on the 3′-side of the alkylated guanine), and base flip-out. An antibiotic-induced flipping-out of a single, nonterminal nucleobase from a DNA duplex was observed for the first time in a crystal structure.  相似文献   

9.
To assess whether there are universal rules that govern amino acid–base recognition, we investigate hydrogen bonds, van der Waals contacts and water-mediated bonds in 129 protein–DNA complex structures. DNA–backbone interactions are the most numerous, providing stability rather than specificity. For base interactions, there are significant base–amino acid type correlations, which can be rationalised by considering the stereochemistry of protein side chains and the base edges exposed in the DNA structure. Nearly two-thirds of the direct read-out of DNA sequences involves complex networks of hydrogen bonds, which enhance specificity. Two-thirds of all protein–DNA interactions comprise van der Waals contacts, compared to about one-sixth each of hydrogen and water-mediated bonds. This highlights the central importance of these contacts for complex formation, which have previously been relegated to a secondary role. Although common, water-mediated bonds are usually non-specific, acting as space-fillers at the protein–DNA interface. In conclusion, the majority of amino acid–base interactions observed follow general principles that apply across all protein–DNA complexes, although there are individual exceptions. Therefore, we distinguish between interactions whose specificities are ‘universal’ and ‘context-dependent’. An interactive Web-based atlas of side chain–base contacts provides access to the collected data, including analyses and visualisation of the three-dimensional geometry of the interactions.  相似文献   

10.
Origin of the intrinsic rigidity of DNA   总被引:3,自引:2,他引:1       下载免费PDF全文
The intrinsic rigidities of DNA and RNA helices are generally thought to arise from some combination of vertical base-stacking interactions and intra-helix phosphate–phosphate charge repulsion; however, the relative contributions of these two types of interaction to helix rigidity have not been quantified. To address this issue, we have measured the rotational decay times of a ‘gapped-duplex’ DNA molecule possessing a central, single-stranded region, dT24, before and after addition of the free purine base, N6-methyladenine (meA). Upon addition of meA, the bases pair with the T residues, forming a continuous stack within the gap region. Formation of the gapped duplex is accompanied by a nearly 2-fold increase in decay time, to values that are indistinguishable from the full duplex control for monovalent salt concentrations up to 90 mM. These results indicate that at least 90% of the rigidity of the dTn–dAn homopolymer derives from base pair stacking effects, with phosphate–phosphate interactions contributing relatively little to net helix rigidity at moderate salt concentrations.  相似文献   

11.
The solution conformations of the dinucleotide d(TT) and the modified duplex d(CGCGAATTCGCG)2 with N3'--> P5' phosphoramidate internucleoside linkages have been studied using circular dichroism (CD) and NMR spectroscopy. The CD spectra indicate that the duplex conformation is similar to that of isosequential phosphodiester RNA, a A-type helix, and is different from that of DNA, a B-type helix, NMR studies of model dimers d(TpT) and N3'--> P5' phosphoramidate d(TnpT) show that the sugar ring conformation changes from predominantly C2'-endo to C3'-endo when the 3'-phosphoester is replaced by a phosphoramidate group. Two-dimensional NMR (NOESY, DQF-COSY and TOCSY spectra) studies of the duplex provide additional details about the A-type duplex conformation of the oligonucleotide phosphoramidate and confirm that all furanose rings of 3'-aminonucleotides adopt predominantly N-type sugar puckering.  相似文献   

12.
Spontaneous sharp bending of DNA: role of melting bubbles   总被引:5,自引:4,他引:1  
The role of centrally located and distributed base pair mismatches (‘melting bubbles’) on localized bending and stiffness of short dsDNA fragments is evaluated using time-dependent fluorescence lifetime measurements. Distributed melting bubbles are found to induce larger bending angles and decreased levels of stiffness in DNA than centrally located ones of comparable overall size. Our results indicate that spontaneous local opening-up of the DNA duplex could facilitate sharp bending of short DNA strands even in the absence of DNA binding proteins. We also find that the occurrence of two closely spaced melting bubbles will generally be favored when a large energetic barrier must be overcome in forming the desired bent DNA structure.  相似文献   

13.
Topological constraints in nucleic acid hybridization kinetics   总被引:2,自引:0,他引:2  
A theoretical examination of kinetic mechanisms for forming knots and links in nucleic acid structures suggests that molecules involving base pairs between loops are likely to become topologically trapped in persistent frustrated states through the mechanism of ‘helix-driven wrapping’. Augmentation of the state space to include both secondary structure and topology in describing the free energy landscape illustrates the potential for topological effects to influence the kinetics and function of nucleic acid strands. An experimental study of metastable complementary ‘kissing hairpins’ demonstrates that the topological constraint of zero linking number between the loops effectively prevents conversion to the minimum free energy helical state. Introduction of short catalyst strands that break the topological constraint causes rapid conversion to full duplex.  相似文献   

14.
2-Aminopurine (2-AP), a fluorescent analog of adenine, has been widely used as a probe for local DNA conformation, since excitation and emission characteristics and fluoresence lifetimes of 2-AP vary in a sequence-dependent manner within DNA. Using steady-state and time-resolved fluorescence techniques, we report that 2-AP appears to be unusually stacked in the internal positions of ATAT and TATA in duplex DNA. The excitation wavelength maxima for 2-AP within these contexts were red shifted, indicating reduced solvent exposure for the fluorophore. Furthermore, in these contexts, 2-AP fluorescence was resistant to acrylamide-dependent collisional quenching, suggesting that the fluorophore is protected by its stacked position within the duplex. This conclusion was further reinforced by the presence of a secondary peak at 275 nm in the fluorescence excitation spectra that is indicative of efficient excitation energy transfer from nearby non-fluorescent DNA bases. Fluorescence anisotropy decay and internal angular ‘wobbling’ motion measurements of 2-AP within these alternating AT contexts were also consistent with the fluorophore being highly constrained and immobile within the base stack. When these fluorescence characteristics are compared with those of 2-AP within other duplex DNA sequence contexts, they are unique.  相似文献   

15.
The free energy of the stacking-unstacking process of deoxyribodinucleoside monophosphates in aqueous solution has been investigated by potential of mean force calculations along a reaction coordinate, defined by the distance between the glycosidic nitrogen atoms of the bases. The stacking-unstacking process of a ribodinucleoside monophosphate was observed to be well characterized by this coordinate, which has the advantage that it allows for a dynamical backbone and flexible bases. All 16 naturally occurring DNA dimers composed of the adenine, cytosine, guanine, or thymine bases in both the 5' and the 3' positions were studied. From the free-energy profiles we observed the deepest minima for the stacked states of the purine-purine dimers, but good stacking was also observed for the purine-pyrimidine and pyrimidine-purine dimers. Substantial stacking ability was found for the dimers composed of a thymine base and a purine base and also for the deoxythymidylyl-3',5'-deoxythymidine dimer. Very poor stacking was observed for the dCpdC dimer. Conformational properties and solvent accessibility are discussed for the stacked and unstacked dimers. The potential of mean force profiles of the stacking-unstacking process for the DNA dimers are compared with the RNA dimers.  相似文献   

16.
We report here the crystal structure of the DNA hexamer duplex d(CGCGCA).d(TGCGCG) at 1.71 Å resolution. The crystals, in orthorhombic space group, were grown in the presence of cobalt hexammine, a known inducer of the left-handed Z form of DNA. The interaction of this ion with the DNA helix results in a change of the adenine base from the common amino tautomeric form to the imino tautomer. Consequently the A:T base pair is disrupted from the normal Watson–Crick base pairing to a ‘wobble’ like base pairing. This change is accommodated easily within the helix, and the helical parameters are those expected for Z-DNA. When the cobalt hexammine concentration is decreased slightly in the crystallization conditions, the duplex crystallizes in a different, hexagonal space group, with two hexamer duplexes in the asymmetric unit. One of these is situated on a crystallographic 6-fold screw axis, leading to disorder. The tautomeric shift is not observed in this space group. We show that the change in inter-helix interactions that lead to the two different space groups probably arise from the small decrease in ion concentration, and consequently disordered positions for the ion.  相似文献   

17.
The parallel (recombination) ‘R-triplex’ can accommodate any nucleotide sequence with the two identical DNA strands in parallel orientation. We have studied oligonucleotides able to fold back into such a recombination-like structure. We show that the fluorescent base analogs 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI) can be used as structural probes for monitoring the integrity of the triple-stranded conformation and for deriving the thermodynamic characteristics of these structures. A single adenine or guanine base in the third strand of the triplex-forming and the control oligonucleotides, as well as in the double-stranded (ds) and single-stranded (ss) reference molecules, was substituted with 2AP or 6MI. The 2AP*(T·A) and 6MI*(C·G) triplets were monitored by their fluorescence emission and the thermal denaturation curves were analyzed with a quasi-two-state model. The fluorescence of 2AP introduced into an oligonucleotide sequence unable to form a triplex served as a negative control. We observed a remarkable similarity between the thermodynamic parameters derived from melting of the secondary structures monitored through absorption of all bases at 260 nm or from fluorescence of the single base analog. The similarity suggests that fluorescence of the 2AP and 6MI base analogs may be used to monitor the structural disposition of the third strand. We consider the data in the light of alternative ‘branch migration’ and ‘strand exchange’ structures and discuss why these are less likely than the R-type triplex.  相似文献   

18.
19.
The crystal structure of subtype-B HIV-1 genomic RNA Dimerization Initiation Site duplex revealed chain cleavage at a specific position resulting in 3′-phosphate and 5′-hydroxyl termini. A crystallographic analysis showed that Ba2+, Mn2+, Co2+ and Zn2+ bind specifically on a guanine base close to the cleaved position. The crystal structures also point to a necessary conformational change to induce an ‘in-line’ geometry at the cleavage site. In solution, divalent cations increased the rate of cleavage with pH/pKa compensation, indicating that a cation-bound hydroxide anion is responsible for the cleavage. We propose a ‘Trojan horse’ mechanism, possibly of general interest, wherein a doubly charged cation hosted near the cleavage site as a ‘harmless’ species is further transformed in situ into an ‘aggressive’ species carrying a hydroxide anion.  相似文献   

20.
Small RNA silencing is mediated by the effector RNA-induced silencing complex (RISC) that consists of an Argonaute protein (AGOs 1–4 in humans). A fundamental step during RISC assembly involves the separation of two strands of a small RNA duplex, whereby only the guide strand is retained to form the mature RISC, a process not well understood. Despite the widely accepted view that ‘slicer-dependent unwinding’ via passenger-strand cleavage is a prerequisite for the assembly of a highly complementary siRNA into the AGO2-RISC, here we show by careful re-examination that ‘slicer-independent unwinding’ plays a more significant role in human RISC maturation than previously appreciated, not only for a miRNA duplex, but, unexpectedly, for a highly complementary siRNA as well. We discovered that ‘slicer-dependency’ for the unwinding was affected primarily by certain parameters such as temperature and Mg2+. We further validate these observations in non-slicer AGOs (1, 3 and 4) that can be programmed with siRNAs at the physiological temperature of humans, suggesting that slicer-independent mechanism is likely a common feature of human AGOs. Our results now clearly explain why both miRNA and siRNA are found in all four human AGOs, which is in striking contrast to the strict small-RNA sorting system in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号