首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Among the hunting strategies employed by members of the order Carnivora (Mammalia), two, stalk and ambush and sustained pursuit, are particularly prevalent among larger species of the order. It has been difficult to identify morphological traits that support this distinction and ecological observations have shown that most carnivorans adopt a continuum of strategies, depending on available habitat and prey. In this paper, the shape of the distal humerus articulation is analysed, with the aim of exploring the use of the forelimb in prey procurement, and as a guide to such behaviour among fossil carnivorans. The results suggest that manual manipulation and locomotion are conflicting functions. Elbow‐joint morphology supports a division between grapplers (i.e. ambushers) and nongrapplers (i.e. pursuers). Joints of the former are characterized by being relatively wide and the latter, by being relatively narrow and box‐like with pronounced stabilizing features. At intermediate and large body sizes, carnivorans show a pattern suggesting mutually exclusive feeding strategies that involve either grappling with prey or sustained pursuit. The former allows for large body sizes, such as pantherine felids and ursids; the latter includes species of only moderate size, such as hyenids and canids. Elbow‐joint morphology is closely linked to phylogeny, but the morphology of the cheetah converges with that of nongrapplers, showing that strong selective forces may override the phylogenetic component. Two taxa of giant mustelids from the Miocene were analysed to test whether this sort of analysis is applicable to carnivorans of the past. The African Late Miocene species Ekorus ekakeran has a joint morphology comparable to that of modern‐day nongrapplers. Two joint morphologies were found in the North American Late Oligocene‐Early Miocene Megalictis ferox. The first morphology is comparable to that of modern pantherine cats and the second forms an intermediate between grapplers and nongrapplers that is not present in the modern carnivoran fauna. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 91–104.  相似文献   

2.
Since the canids and felids diverged in the mid‐Eocene or earlier, each family has developed a suite of morphological and behavioural adaptations for obtaining and consuming prey. We here distinguish between prey taxa captured and eaten as a result of these phylogenetic adaptations, and those because they are fortuitously encountered, and argue that such supplementary prey, often opportunistically caught, create a buffer between sympatric, and potentially competitive, canids and felids and thus enhance coexistence. We base our analysis on dietary data derived from the stomach contents of four sympatric canid and felid species in the Free State Province, South Africa (canids: Cape fox Vulpes chama and black‐backed jackal Canis mesomelas; felids: African wild cat Felis silvestris lybica and caracal Caracal caracal), and from results of studies on these species elsewhere in southern Africa. The two canid species preyed heavily on invertebrates, and thus opportunistically, while the felids (especially the caracal) concentrated on mammals, prey they are phylogenetically adapted to capture. Only three species of mammalian prey are shared by the four species. The ratio of opportunistically‐to‐phylogenetically mediated prey taxa used (the O/P ratio) differ between the species, with the black‐backed jackal having the most opportunistically caught taxa in its diet, and the caracal the least. As predicted, a comparison of this data with those from dietary studies of the same species carried out elsewhere indicates that the number of opportunistically obtained prey taxa varies more than those resulting from phylogenetic adaptations. The largest canid had the widest food spectrum (35 prey taxa) while the smallest felid had the most restricted one (11 prey taxa). We argue that using the O/P distinction allows a better understanding of changes in food niche breadth of particular species, especially in xeric areas, and gives a better indication of possible exploitative competition for food by sympatric carnivores than when regarding all prey taxa as actively pursued. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 527–538.  相似文献   

3.
The relationship of carpal morphology to ecology and habitat is under studied in carnivorans and more generally in mammals. Here, we use 3D-scanning techniques to assess the usefulness of a carpal bone, the scapholunar, in carnivorans to reflect ecology and habitat, and to reconstruct the ecology of five extinct carnivorans from two fossil sites: Rancho La Brea and Natural Trap Cave. We 3D-scanned scapholunars and measured articular surface areas and angles between articular facets using GeoMagic and Rhino 3D-software. We analyzed the difference in these metrics using multivariate analysis of variance and discriminant function analysis. Results show that the scapholunar reflects ecological signal, with clear groupings of cursorial carnivorans and grappling/climbing carnivorans; however, phylogenetic signal was also present in the results with hyaenids, canids, and large felids in distinct morphospaces. Extinct species Miracinonyx trumani (American cheetah) and Smilodon fatalis (sabertooth cat) showed surprising results with M. trumani grouping with pantherines instead of Acinonyx or Puma, suggesting it runs but still retains the ability to grapple prey. S. fatalis groups with pantherines, but also shows some unique adaptations, suggesting it had a different range of wrist motion than living cats. Overall, the scapholunar is a good indicator of ecology and functional morphology and can be another tool to use in modern and fossil carnivorans to reconstruct extinct ecologies and locomotor behaviors.  相似文献   

4.
5.
  1. Although the amino acid composition of fishes and some marine invertebrates varies among taxa and systems, similar information is lacking for freshwater invertebrates. The objectives were to characterise and compare the amino acid composition among different aquatic species, dietary habits, and environmental conditions.
  2. Benthic macroinvertebrates from different functional feeding groups (FFG), bulk zooplankton, biofilm, and fishes representing 12 families (21 genera or species) were collected from temperate lakes in eastern Canada during the summers of 2013 and 2014. Fifteen protein-bound amino acids, including thiols, were measured in whole invertebrates, biofilm, or fish muscle. We hypothesised that the amino acid composition will differ among species and systems.
  3. Multiple discriminant analyses revealed significant differences in the amino acid composition among species—based on varying percentages of cysteine (as cysteic acid) and histidine—and among FFG/trophic designations—based on histidine and lysine—where the primary consumers were more variable than the predators.
  4. Overall, the results suggest that patterns were based on phylogenetics, biological characteristics, and the FFG/trophic designations of biota.
  5. The within-taxon variability in composition was also related to differences among lakes. Characteristics of their environment, including lake pH and the food web structure (abundance and composition of taxa), probably influenced their dietary habits and amino acid composition of diet.
  6. These results expand the currently limited knowledge of the biochemical composition of freshwater biota and provide impetus for further studies on nutritional values in predator-prey relationships, trophic guilds, and the biomagnification of protein-bound contaminants through food webs.
  相似文献   

6.
  1. Globally, large terrestrial carnivores (Carnivora) have suffered precipitous declines in population and range. Today, they must persist in increasingly isolated natural habitat patches within a human-dominated matrix. Effective conservation aimed at supporting carnivores in such landscapes requires species-specific understanding of habitat requirements.
  2. We present results from a review of the published literature to assess the current state of knowledge regarding habitat preferences of the African lion Panthera leo, with the aim of identifying common drivers of habitat use across contexts.
  3. Using the Web of Science, we identified 154 usable articles and extracted information relating to study topic, location, habitats described, land-use type, and any documented habitat preferences.
  4. Only 31 studies documented evidence of habitat use, and collectively, they suggested that preferences for specific habitat types were varied and context-specific. The importance of prey abundance and proximity to water was highlighted in multiple studies. Anthropogenic factors interfered with expected patterns of habitat use. There was evident bias in study locations: 83% of the habitat-use studies were based in only three countries, and 70% were focussed on protected or managed areas.
  5. Our synthesis suggests that lions demonstrate behavioural plasticity in habitat use in response to anthropogenic pressures. To understand the limits of this plasticity and to manage Africa’s changing landscapes effectively for roaming lions, future research should be focussed on analysis of habitat use outside protected areas, taking into account gradients of distance to water, prey abundance, and anthropogenic risk.
  相似文献   

7.
8.
  1. Interspecific competition is an important evolutionary force, influencing interactions between species and shaping the composition of biological communities. In mammalian carnivores, to reduce the risks of negative encounters between competitors, species can employ a strategy of temporal partitioning, adapting activity patterns to limit synchronous activity. This strategy of non-human competitor avoidance, however, may be influenced by the expansion of human activities, which has driven wild mammals towards nocturnality.
  2. We hypothesise that the disruption of temporal niche partitioning by humans and their activities could increase temporal overlap between carnivores, enhancing interspecific competition.
  3. We reviewed the published literature systematically and employed generalised linear models to evaluate quantitatively the relative influence of a range of human, meteorological and ecological variables on coefficients of temporal overlap within mammalian terrestrial carnivore communities (orders Carnivora and Didelphimorphia) on a global scale.
  4. None of the models investigated showed evidence of an impact of humans on temporal partitioning between carnivores on a global scale. This illustrates that temporal avoidance of humans and competitors does not always follow a consistent pattern and that its strength may be context-dependent and relative to other dimensions of niche partitioning (spatial and trophic).
  5. Similarly, the regulation of activity patterns may be strongly site-specific and may be influenced by a combination of biotic and abiotic characteristics. Temporal avoidance of both humans and competitors by carnivores may take the form of short, reactive responses that do not impact activity patterns in the longer term.
  6. Although we did not detect a global disruption of temporal partitioning due to human disturbance, carnivore communities may still experience an increase in interspecific competition in other niche dimensions. Further research would benefit from using controlled experimental designs and investigating multiple dimensions of niche partitioning simultaneously. Finally, we recommend complementing the coefficient of temporal overlap with other metrics of fine-scale spatiotemporal interactions.
  相似文献   

9.
  1. Animals should adapt their foraging habits, changing their dietary breadth in response to variation in the richness and availability of food resources. Understanding how species modify their dietary breadth according to variation in resource richness would support predictions of their responses to environmental changes that alter prey communities.
  2. We evaluated relationships between the dietary breadth of large terrestrial carnivores and the local richness of large prey (defined as the number of species). We tested alternative predictions suggested by ecological and evolutionary theories: with increasing prey richness, species would (1) show a more diverse diet, thus broadening their dietary breadth, or (2) narrow their dietary breadth, indicating specialisation on a smaller number of prey.
  3. We collated data from 505 studies of the diets of 12 species of large terrestrial mammalian carnivores to model relationships between two indices of dietary breadth and local prey richness.
  4. For the majority of species, we found no evidence for narrowing dietary breadth (i.e. increased specialisation) with increasing prey richness. Although the snow leopard and the dhole appeared to use a lower number of large prey species with increasing prey richness, larger sample sizes are needed to support this result.
  5. With increasing prey richness, the five largest carnivores (puma Puma concolor, spotted hyaena Crocuta crocuta, jaguar Panthera onca, lion Panthera leo, and tiger Panthera tigris), plus the Eurasian lynx Lynx lynx and the grey wolf Canis lupus (which are usually top predators in the areas from which data were obtained), showed greater dietary breadth and/or used a greater number of large prey species (i.e. increased generalism).
  6. We suggest that dominant large carnivores encounter little competition in expanding their dietary breadth with increasing prey richness; conversely, the dietary niche of subordinate large carnivores is limited by competition with larger, dominant predators. We suggest that, over evolutionary time, resource partitioning is more important in shaping the dietary niche of smaller, inferior competitors than the niche of dominant ones.
  相似文献   

10.
11.
This study is prompted by the discovery of an incus of Hyaenodon, the first known auditory ossicle of this genus and thus of any hyaenodont mammal so far. A large set of incudes of recent Carnivora, including felids, hyaenids, viverrids, herpestids, nandiniid and canids of different ecosystems, was set up for morphological comparison. This study examines especially the incudo-mallear facet. Typically, the incudo-mallear facet is composed of: (1) three articular surfaces in felids, (2) a U-shaped surface in hyaenids and (3) four surfaces in canids. Both taxonomy (on family level) and habitat (open, closed or mixed habitat preference) might have an impact on the morphology of the incus facets, the former having a major impact in our sample. The Hyaenodon incus is small, delicate and possesses an incudo-mallear facet of a general saddle-shape with two articulation facets, a large superior articulation area and a circular, inferior articulation area. Herein, its general morphology and facet shape is most similar to the felid incus morphology.  相似文献   

12.
  • 1 This paper summarises the most important contributions on trophic relationships of lotic meiofauna. In contrast to marine research, the few quantitative studies of the freshwater meiobenthos have shown that these invertebrates not only take up particulate/fine organic matter, but also dissolved organic substances attached to organic particles. In lotic ecosystems, further estimates of grazing rate and bacterial/algal ingestion rate are needed, particularly in situ measurements.
  • 2 The effects of macroinvertebrate predators upon meiofauna are still under debate. Depending on the type of experiments (laboratory vs. field) it seems that macrofauna may or may not affect meiofauna. Field samples and analyses of gut contents of larval tanypod chironomids have shown that the impact upon meiofauna was low and larvae were nonselective predators. Predation amounted to 2.2% of the combined prey density and prey consumption averaged 1.3 individuals per predator individual per year.
  • 3 Adding taxonomic resolution by including the meiofaunal component within lotic food webs distinctly increases the number of total species and, as a consequence, changes food web statistics. Webs that included meiofauna revealed that these metazoans contributed substantially to the percentage of intermediate species (species with predators and prey). The resolution of dietary analyses of major consumers of macro‐ and meiobenthos showed that many stream invertebrates feed on meiofauna.
  相似文献   

13.
Carnivora is a successful taxon in terms of dietary diversity. We investigated the dietary adaptations of carnivoran dentition and the developmental background of their dental diversity, which may have contributed to the success of the lineage. A developmental model was tested and extended to explain the unique variability and exceptional phenotypes observed in carnivoran dentition. Carnivorous mammalian orders exhibited two distinct patterns of dietary adaptation in molars and only Carnivora evolved novel variability, exhibiting a high correlation between relative molar size and the shape of the first molar. Studies of Bmp7-hetero-deficient mice, which may exhibit lower Bmp7 expression, suggested that Bmp7 has pleiotropic effects on these two dental traits. Its effects are consistent with the pattern of dietary adaptation observed in Carnivora, but not that observed in other carnivorous mammals. A molecular evolutionary analysis revealed that Bmp7 sequence evolved by natural selection during ursid evolution, suggesting that it plays an evolutionary role in the variation of carnivoran dentition. Using mouse experiments and a molecular evolutionary analysis, we extrapolated the causal mechanism of the hitherto enigmatic ursid dentition (larger M2 than M1 and M3). Our results demonstrate how carnivorans acquired novel dental variability that benefits their dietary divergence.  相似文献   

14.
  1. Competition among closely-related specialist predators has rarely been studied, and thus the mechanism of their coexistence remains enigmatic. Interspecific competition among specialised co-occurring predators capturing termites should be high.
  2. Here we investigated various niche dimensions, namely temporal, spatial and trophic, of a couple of jumping spider species of the genus Stenaelurillus (Stenaelurillus guttiger and S. modestus) from South Africa, to find whether these two species co-exist and along which niche dimension(s) they differentiate.
  3. The two species co-occurred in two out of five study sites. Body size was not significantly different between the species. The phenology was shifted so that one species matured earlier. Circadian activity was not different, as both species were diurnal and active at similar times. Both species preyed almost exclusively on termites. The fundamental trophic niche was very similar and rather narrow. The realised trophic niche at the prey order level of both species was similar, but at the genus level it was different. In S. modestus it was narrower, as it captured mainly Odontotermes, while S. guttiger exploited a few termite species. The size of prey captured was also similar between the two species. The frequency of intraguild predation was negligible.
  4. We conclude that both Stenaelurillus species are specialised termitophagous predators. The two species can coexist across broad spatial scales due to spatial segregation on the landscape. At the sites where they co-occur, the two species specialise on different termite prey, promoting local coexistence.
  相似文献   

15.
  1. Closely related predator species often share several prey items, making it hard to differentiate the effects on their feeding habits of variation in food availability and of competition. We hypothesised that we could overcome this obstacle by quantifying and comparing nutritional niches.
  2. We reviewed dietary studies that assessed the relative bulk of each food item, as either per cent biomass or per cent mean volume, in the diet of two closely related species, pine marten Martes martes and stone marten Martes foina, and calculated the nutrient profiles (intakes of protein, lipids and carbohydrates) of each diet.
  3. Both martens’ diets were tightly clustered (mean values: 47% of energy from protein, 39% from lipid, and 14% from carbohydrate). In allopatry, the nutritional niches of the two species did not differ, but in sympatry, the stone marten ate more carbohydrates and less protein than the pine marten. In allopatry, the protein intake of the stone marten remained high (45–52%) in very different habitats, from cultivated lowland to Alpine forests.
  4. Our data suggest that stone marten frugivory may, at least partially, be the result of interspecific competition. By analysing dietary data in the framework of nutritional ecology, we could compare the feeding requirements of pine martens and stone martens more effectively than by using classical estimates of trophic niche overlap at the food item level. This approach may help to shed light on the trophic relationships of other competing species.
  相似文献   

16.
  1. Intraspecific trophic variability has important ecological and evolutionary implications, and is driven by multiple interacting factors. Functional traits and environmental conditions are important in mediating the trophic niche of individuals because they determine their ability to consume certain prey, their energetic requirements, and resource availability. In this study, we aimed at investigating the interacting effects of functional traits and environmental conditions on several attributes of trophic niche in natural populations.
  2. Here, we quantified intraspecific variability in the trophic niche of 12 riverine populations of European minnow (Phoxinus phoxinus) using stable isotope analyses. Functional traits (i.e. morpho-anatomical traits) and environmental conditions (i.e. upstream–downstream gradient, forest cover) were quantified to identify the determinants of (1) trophic position and resource origin, (2) trophic niche size, and (3) trophic differentiation (β-diversity) among populations.
  3. We demonstrated that trophic position and resource origin covaried with functional traits related to body size and locomotion performance, and that the strength and shape of these relationships varied according to local environmental conditions. The trophic niche size also differed among populations, although no determinant was identified. Finally, trophic β-diversity was correlated to environmental differentiation among sites.
  4. Overall, the determinants of intraspecific variability in trophic niche appeared highly context-dependent, and related to the interactions between functional traits and environmental conditions. Because populations are currently facing important environmental changes, understanding this context-dependency is important for predicting food web structure and ecosystem dynamics in a changing world.
  相似文献   

17.
Developmental origins that guide the evolution of dental morphology and dental formulae are fundamental subjects in mammalian evolution. In a previous study, a developmental model termed the inhibitory cascade model was established. This model could explain variations in relative molar sizes and loss of the lower third molars, which sometimes reflect diet, in murine rodents and other mammals. Here, I investigated the pattern of relative molar sizes (inhibitory cascade pattern) in canids, a taxon exhibiting a wide range of dietary habits. I found that interspecific variation in canid molars suggests a unique inhibitory cascade pattern that differs from that in murine rodents and other previously reported mammals, and that this variation reflects dietary habits. This unique variability in molars was also observed in individual variation in canid species. According to these observations, canid species have greater variability in the relative sizes of first molars (carnassials), which are functionally important for dietary adaptation in the Carnivora. In conclusion, an inhibitory cascade that differs from that in murine rodents and other mammals may have contributed to diverse dietary patterns and to their parallel evolution in canids.  相似文献   

18.
Cephalisation in Canidae Studied were the intraspecific and interspecific relationships between brain weight and body weight in Canidae. Inclination values of the allometric lines: intraspecific – 0,25, interspecific 0,571. Most of the studied species have nearly the same degree of cephalisation, deviations from the interspecific allometric line are small; the cephalisation of Nyctereutes and Otocyon is less developed than in the other canid species. There is no difference in cephalisation between most canids and felids. Mustelids show a high variability in cephalisation. Criticized were the data of Bauchot (1985) and Gittleman (1986) on brain weight and body weight.  相似文献   

19.
The cortical thickness of long bones can be an effective indicator of locomotor modes and other stresses encountered by bone. Felids and canids are two carnivoran families that have similar levels of phylogenetic diversity and overlap in body size, but differ in their locomotor habits. Many canids and felids are cursorial, but felids also climb more frequently than canids. Felids also display a secondary use for their forelimbs not observed in any canids: they use their forelimbs to grasp and subdue prey. Large felids use their forelimbs much more extensively to subdue prey than do large canids and, therefore, should have proportionately greater forces applied to their forelimbs. This study uses a non-invasive radiographic approach to examine the differences in cortical thickness in the humerus between the Felidae and Canidae, as well as between size groups within these two families. Results show few significant differences between the two families, with a slight trend toward more positive allometry in the felids. Overall, radiographic measurements were found to be better predictors of body mass than either prey killing behavior or locomotor mode in these two carnivoran families. One canid that demonstrated exceptionally high cortical area was the bush dog, Speothos venaticus. The rarely observed bush dog has been postulated to swim and dig regularly, and it may be that the thickened cortical bone reflects these behaviors.  相似文献   

20.
  1. Ecological opportunity (i.e. the diversity of available resources) has a pivotal role in shaping niche variation and trophic specialisation of animals. However, ecological opportunity can be described with regard to both diversity and abundance of resources. The degree to which these two components contribute to niche variation remains unexplored.
  2. To address this, we used an extensive dataset on fish diet and benthic invertebrate diversity and density from 73 sampling events in three Norwegian rivers in order to explore realised trophic niches and the response of dietary niche variation along gradients of resource diversity (potential trophic niches), resource density (as a proxy of resource abundance) and fish density (as a proxy of inter‐ and intra‐specific competition) in a freshwater top predator (the brown trout, Salmo trutta L.).
  3. Linear models indicated that individual and population niche variation increased with increasing ecological opportunity in terms of prey diversity. However, no simple cause‐and‐effect associations between niche indices and prey abundance were found. Our multiple regression analyses indicated that the abundance of certain resources (e.g. Chironomidae) can interact with prey diversity to determine individual and population realised trophic niches. Niche variation (within‐individual component and inter‐individual diet variation) decreased with increasing inter‐ and intra‐specific competition.
  4. This study extends prevailing trophic ecology theory by identifying diversity, rather than density, of available prey resources as a primary driver of niche variation in fish of temperate riverine systems with no extensive resource limitation. The study also shows that ecological opportunity may mask the direction of the effect (compression or expansion) of competition on niche variation when food resources are diverse.
  5. Our study provides novel empirical insight to the driving forces behind niche variation and reveals that diversity, rather than density, of available prey resources may be a primary driver of niche variation in freshwater fish. Our study supports the view that a broader potential trophic niche promotes broader realised trophic niche variation by individuals, which leads to individual niche diversification by opening access to alternatives resources, resulting in a concomitant rise in the realised trophic niche width of the population.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号