首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stohlgren  Thomas J.  Bull  Kelly A.  Otsuki  Yuka  Villa  Cynthia A.  Lee  Michelle 《Plant Ecology》1998,138(1):113-125
In the Central Grasslands of the United States, we hypothesized that riparian zones high in soil fertility would contain more exotic plant species than upland areas of low soil fertility. Our alternate hypothesis was that riparian zones high in native plant species richness and cover would monopolize available resources and resist invasion by exotic species. We gathered nested-scale vegetation data from 40 1 m2subplots (nested in four 1000 m2 plots) in both riparian and upland sites at four study areas in Colorado, Wyoming, and South Dakota (a total of 320 1 m2 subplots and 32 1000 m2 plots). At the 1 m2 scale, mean foliar cover of native species was significantly greater (P<0.001) in riparian zones (36.3% ± 1.7%) compared to upland sites (28.7% ± 1.5%), but at this small scale there were no consistent patterns of native and exotic species richness among the four management areas. Mean exotic species cover was slightly higher in upland sites compared to riparian sites (9.0% ± 3.8% versus 8.2% ± 3.0% cover). However, mean exotic species richness and cover were greater in the riparian zones than upland sites in three of four management areas. At the 1000 m2 scale, mean exotic species richness was also significantly greater (P<0.05) in riparian zones (7.8 ± 1.0 species) compared to upland sites (4.8 ± 1.0 species) despite the heavy invasion of one upland site. For all 32 plots combined, 21% of the variance in exotic species richness was explained by positive relationships with soil % silt (t =1.7, P=0.09) and total foliar cover (t = 2.4, P=0.02). Likewise, 26% of the variance in exotic species cover (log10 cover) was explained by positive relationships with soil % silt (t =2.3, P=0.03) and total plant species richness (t = 2.5, P=0.02). At landscape scales (four 1000 m2 plots per type combined), total foliar cover was significantly and positively correlated with exotic species richness (r=0.73, P<0.05) and cover (r=0.74, P<0.05). Exotic species cover (log10 cover) was positively correlated with log10% N in the soil (r=0.61, P=0.11) at landscape scales. On average, we found that 85% (±5%) of the total number of exotic species in the sampling plots of a given management area could be found in riparian zones, while only 50% (±8%) were found in upland plots. We conclude that: (1) species-rich and productive riparian zones are particularly invasible in grassland ecosystems; and (2) riparian zones may act as havens, corridors, and sources of exotic plant invasions for upland sites and pose a significant challenge to land managers and conservation biologists.  相似文献   

2.
Aims Alien species are commonly considered as harmful weeds capable of decreasing native biodiversity and threatening ecosystems. Despite this assumption, little is known about the long-term patterns of the native–alien relationships associated with human disturbed managed landscapes. This study aims to elucidate the community dynamics associated with a successional gradient in Chilean Mediterranean grasslands, considering both native and alien species.Methods Species richness (natives and aliens separately) and life-form (annuals and perennials) were recorded in four Chilean post-agricultural grazed grasslands each covering a broad successional gradient (from 1 to 40 years since crop abandonment). A detrended correspondence analysis (DCA), mixed model effects analyses and correlation tests were conducted to assess how this temporal gradient influenced natives and aliens through community dynamics.Important findings Our results show different life-form patterns between natives and aliens over time. Aliens were mainly represented by annuals (especially ruderals and weeds), which were established at the beginning of succession. Annual aliens also predominated at mid-successional stages, but in old grasslands native species were slightly more representative than alien ones within the community. In the late successional states, positive or no correlations at all between alien and native species richness suggested the absence of competition between both species groups, as a result of different strategies in occupation of the space. Community dynamics over time constitute a net gain in biodiversity, increasing natives and maintaining a general alien pool, allowing the coexistence of both. Biotic interactions including facilitation and/or tolerance processes might be occurring in Chilean post-agricultural grasslands, a fact that contradicts the accepted idea of the alien species as contenders.  相似文献   

3.
We tested whether the recently proposed two‐part measure of degree of invasion (DI) of a community relating exotic proportion of cover to exotic proportion of richness can characterize patterns of plant invasions at multiple savannah sites in Southern Africa. Regression analysis was performed on transformed data to assess how this two‐part measure of DI compares to other metrics of community invasibility. The results indicate that at the plot level, the absolute cover of exotics was not significantly related to native cover for three sites out of four assessed (R2 ≤ 0.17; > 0.05). Also, at all four sites, no significant relationships were detected between native and exotic plant richness at both the 1‐m2 and 400‐m2 plot scales. By contrast, significant (< 0.05) positive linear relationships were observed between exotic proportion of richness and exotic proportion of cover at all sites (R2 was as high as 0.67 and 0.97 for two sites). Our results indicate that the new two‐part measure of DI is able to characterize patterns of plant invasions across plant communities in African savannahs.  相似文献   

4.
Secondary succession after agriculture abandonment (old-fields) is mostly dominated by exotic grass species. Non-native plant invasions may alter soil fauna, potentially inducing plant-soil feedbacks. Despite their importance in nutrient cycling and plant-soil interactions, meso and macrofauna received less attention than bacteria or fungi. Here we compared the composition of the soil arthropod community in native remnants and plant exotic-dominated old-fields grasslands in the Inland Pampa, Argentina. We sampled independent remnants and old-field grassland plots within a 100 km2 agricultural landscape to test the hypothesis that the abundance of soil arthropod organisms is related to the quality of the plant biomass, whereas the diversity of the soil biota is related to plant species richness, resulting in a different soil biota composition because of differing plant communities. When compared to non-invaded remnant grasslands, soil activity and soil food-web characteristics of the old-fields sites included: 1. Higher total arthropod abundance, particularly of Isopoda, Pseudoescorpionida and Blattaria; 2. Lower abundance of Hymenoptera and Enthomobryomorpha (Collembola); 3. Lower diversity, and evenness, but similar richness of soil organisms orders; 4. Higher soil respiration rates and soil temperature; and 5. Higher total soil N and K+content, but lower soil P content. These results illustrate that soil arthropod composition can vary widely within grasslands patches depending on plant species composition. Also, the more diverse plant community of remnant grasslands supports a more diverse soil biota, although soil activity is slower. Our results support the strong linkage between plant community and soil arthropod composition and suggest that changes in soil biota composition might promote plant-soil feedback interactions inducing the persistence of these alternative grassland states in new agricultural human-modified landscapes.  相似文献   

5.
6.
Different types of relationship between herbaceous species richness and several parameters indicating abundance of plant material (herbaceous, woody plants, litter and bare ground cover) are presented. The data were obtained from 50 sites along a 300 km strip running from E to W within Spain and Portugal. Each site was representative of the silvo-pastoral landscape of the Mediterranean type ecosystems of the Iberian peninsula, and contained two neighboring patches, one of grassland and the other of shrubland. 3,600 20 × 20 cm subplots were randomly located (72 per site, 36 per patch) crossing the boundary grassland/shrubland. This approach allowed us to analyze the richness-occupation relationship of the space from different points of view: among and within the sites, and among and within the grassland and shrubland plant communities. We found a unimodal relationship between richness-cover similar to the one generally accepted between richness and biomass. Our results show that the dependence of this relationship varies depending on the spatial scale of the analysis and on the type of data used. When the whole region is taken into account, significant unimodal relationships are found between richness and herbaceous cover, litter and bare ground, and a negative linear relationship with woody plant cover. Within the sites there are mainly linear or non-significant relationships. But the results also depend on the type of communities analyzed. In pastures, the unimodal relationship represents the combination of positive and negative linear responses for low and high cover values, respectively. The value for herbaceous cover in which maximum richness occurs is around 60%. In shrublands, this value for cover also corresponds to maximum species richness, although the possibilities of reaching it are limited by other variables, such as woody plant cover. This implies that, on not considering variability at local scale, the relationship is linear and positive. This paper shows the existence of a common model related to herbaceous cover, but this model has multiple controlling factors that act differently in each type of community.  相似文献   

7.
8.
The percentage of central Iberian herbaceous species introduced into the Mediterranean zone of Chile is analysed in terms of the most usual types of dispersal: endo- and exo-zoochory and anemochory. Almost 15% of the herbaceous species from Central Iberia are naturalized in Chile. This proportion is significantly higher for the endo- and exozoochorous species (21% and 23%), and not significantly for the anemochorous species (20%). In contrast, only 8% of the species not covered by these three groups have been introduced to Chile. Consequently, the percentage of anemochorous, endo- and exozoochorous species is somewhat higher in the dispersive spectrum of the alien species introduced in Chile. These results suggest that the seed dispersal systems associated with animals are particularly favourable for the introduction of species, and that herbivores have facilitated the naturalization and spread of alien herbaceous species from their initial points of introduction.  相似文献   

9.
Peres-Neto PR 《Oecologia》2004,140(2):352-360
A number of studies at large scales have pointed out that abiotic factors and recolonization dynamics appear to be more important than biotic interactions in structuring stream-fish assemblages. In contrast, experimental and field studies at small scales show the importance of competition among stream fishes. However, given the highly variable nature of stream systems over time, competition may not be intense enough to generate large-scale complementary distributions via competitive exclusion. Complementary distribution is a recurrent pattern observed in fish communities across stream gradients, though it is not clear which instances of this pattern are due to competitive interactions and which to individual species requirements. In this study, I introduce a series of null models developed to provide a more robust evaluation of species associations by facilitating the distinction between different processes that may shape species distributions and community assembly. These null models were applied to test whether conspicuous patterns in species co-occurrences are more consistent with their differences in habitat use, morphological features and/or phylogenetic constraints, or with species interactions in fish communities in the streams of a watershed in eastern Brazil. I concluded that patterns in species co-occurrences within the studied system are driven by common species-habitat relationships and species interactions may not play a significant role in structuring these communities. I suggest that large-scale studies, where adequate designs and robust analytical tools are applied, can contribute substantially to understanding the importance of different types of processes in structuring stream-fish communities.  相似文献   

10.
Aim There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines. Location Continental Spain. Methods We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species‐specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Results Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low‐medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients. Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high‐density and homogeneous stands, while enrichment planting would be desirable in mesic and medium‐density planted forests.  相似文献   

11.
Exotic- and native-dominated communities can exist as alternate states in landscapes, but whether exotic-dominated states are persistent in the face of propagule pressure from native species is not well known. Here, we asked whether adding native seeds to low diversity, exotic-dominated patches would shift them to a more diverse, native state by using a long-term experiment with tallgrass prairie species in Iowa, USA. Previous work established that community assembly history led to alternate exotic or native states of perennial species. We added native seeds to plots in the spring after removing aboveground biomass with fire. We found that an experimental seed addition did not cause a shift from exotic to native states. Plots seeded eight years earlier in spring and without a priority effect continued to have the highest abundance and diversity of native species and lowest proportion of exotics. Our results suggest that exotic-dominated states in restorations can persist in the face of native species propagule pressure. Thus, assembly history can play a strong role in generating and maintaining alternate states over long time frames that are relevant to restoration. New restoration projects in exotic-dominated landscapes should maximize effort toward establishing native species during initial stages of restoration.  相似文献   

12.

Background and Aims

Recent studies have suggested that responses to shading gradients may play an important role in establishment success of exotic plants, but hitherto few studies have tested this. Therefore, a common-garden experiment was conducted using multiple Asian woody plant species that were introduced to Europe >100 years ago in order to test whether naturalized and non-naturalized species differ in their responses to shading. Specifically, a test was carried out to determine whether naturalized exotic woody species maintained better growth under shaded conditions, and whether they expressed greater (morphological and physiological) adaptive plasticity in response to shading, relative to non-naturalized species.

Methods

Nineteen naturalized and 19 non-naturalized exotic woody species were grown under five light levels ranging from 100 to 7 % of ambient light. For all plants, growth performance (i.e. biomass), morphological and CO2 assimilation characteristics were measured. For the CO2 assimilation characteristics, CO2 assimilation rate was measured at 1200 μmol m–2 s–1 (i.e. saturated light intensity, A1200), 50 μmol m–2 s–1 (i.e. low light intensity, A50) and 0 μmol m–2 s–1 (A0, i.e. dark respiration).

Key Results

Overall, the naturalized and non-naturalized species did not differ greatly in biomass production and measured morphological and CO2 assimilation characteristics across the light gradient. However, it was found that naturalized species grew taller and reduced total leaf area more than non-naturalized species in response to shading. It was also found that naturalized species were more capable of maintaining a high CO2 assimilation rate at low light intensity (A50) when grown under shading.

Conclusions

The results indicate that there is no clear evidence that the naturalized species possess a superior response to shading over non-naturalized species, at least not at the early stage of their growth. However, the higher CO2 assimilation capacity of the naturalized species under low-light conditions might facilitate early growth and survival, and thereby ultimately favour their initial population establishment over the non-naturalized species.  相似文献   

13.
Aims Mediterranean coastal dunes are habitats of great conservation interest, with a distinctive and rich flora. In the last century, Acacia spp., native from Australia, have been introduced in Portugal, with the objective of stabilizing sand dunes, and since have become dominant in numerous sand dune habitats. This invasion process led to the reduction of native plant species richness, changed soil characteristics and modified habitat's microclimatic characteristics. The aim of this research was to typify and compare, in Mediterranean sand dune ecosystems, the ecophysiological responses to drought of Helichrysum italicum and Corema album, two native species, and Acacia longifolia, an exotic invasive species. We addressed the following specific objectives: (i) to compare water relations and water use efficiencies, (ii) to evaluate water stress, (iii) to assess water use strategies and water sources used by plants and (iv) to evaluate the morphological adaptations at leaf and phyllode level. Methods In order to obtain an integrative view of ecophysiological patterns, water relations and performance measuring methods have been applied: predawn (ψ PD) and midday (ψ MD) water potential, chlorophyll a fluorescence, oxygen isotopic composition of xylem, rain and groundwater (δ 18 O) and leaf carbon isotopic discrimination (Δ 13 C). The leaf characteristics of the three species, as well as the histochemistry of non-glandular trichome cell walls, were also studied to identify morpho-traits related to drought resistance.Important findings The results support our initial hypothesis: although A. longifolia clearly possesses a degree of resistance to water stress, such ability is provided by a different water strategy, when compared to native species. Natives relied on morphological adaptations to restrict water loss, whereas the invasive species adjusted the water uptake as a way to balance their limited ability of restricting water loss. We corroborate that woody native species (i) have a conservative water-saving strategy and minor seasonal variations relative to invasive species, (ii) use enriched water sources during drought periods, indicating different water sources and root systems comparing with invasive species and (iii) present drought leaf morpho-functional adaptations related with limiting water loss. Comparing the physiological performance of invasive and native species can offer causal explanations for the relative success of alien plant invasions on sand dunes ecosystems.  相似文献   

14.
We analyzed the consequences of climate change and the increase in soil erosion, as well as their interaction on plant and soil properties in semiarid Mediterranean shrublands in Eastern Spain. Current models on drivers of biodiversity change predict an additive or synergistic interaction between drivers that will increase the negative effects of each one. We used a climatic gradient that reproduces the predicted climate changes in temperature and precipitation for the next 40 years of the wettest and coldest end of the gradient; we also compared flat areas with 20° steep hillslopes. We found that plant species richness and plant cover are negatively affected by climate change and soil erosion, which in turn negatively affects soil resistance to erosion, nutrient content and water holding capacity. We also found that plant species diversity correlates weakly with plant cover but strongly with soil properties related to fertility, water holding capacity and resistance to erosion. Conversely, these soil properties correlate weaker with plant species cover. The joint effect of climate change and soil erosion on plant species richness and soil characteristics is antagonistic. That is, the absolute magnitude of change is smaller than the sum of both effects. However, there is no interaction between climate change and soil erosion on plant cover and their effects fit the additive model. The differences in the interaction model between plant cover and species richness supports the view that several soil properties are more linked to the effect that particular plant species have on soil processes than to the quantity and quality of the plant cover and biomass they support. Our findings suggest that plant species richness is a better indicator than plant cover of ecosystems services related with soil development and protection to erosion in semiarid Mediterranean climates.  相似文献   

15.
J. B. Wilson 《Oecologia》1987,73(4):579-582
Summary Comparison of co-occurrences between species on a group of islands with those expected from a randombased null model could provide evidence on community structure. However, it is difficult to decide on the appropriate null model. Gilpin and Diamond proposed a model and a test for departure from it, but this test is shown to indicate significant structure even when applied to a matrix of random numbers. An alternative method is suggested, using the distribution of Gilpin and Diamond's deviation as test statistic, but determining the expected distribution by Monto Carlo simulation, and using many such simulations as a randomisation test of significance. The null model used accepts the observed totals of occurrences for islands and species; it therefore offers a somewhat conservative test. Applied to the Vanuatu bird data that Gilpin and Diamond used, significant departure from a null model is seen, but with an excess of extreme negative associations, the opposite result from that given by Gilpin and Diamond's method. It is not possible to tell whether the negative associations are due to autecology, biogeography, or to interactions between species.  相似文献   

16.
Old fields often become dominated by exotic plants establishing persistent community states. Ecosystem functioning may differ widely between such novel communities and the native-dominated counterparts. We evaluated soil ecosystem attributes in native and exotic (synthetic) grass assemblages established on a newly abandoned field, and in remnants of native grassland in the Inland Pampa, Argentina. We asked whether exotic species alter soil functioning through the quality of the litter they shed or by changing the decomposition environment. Litter decomposition of the exotic dominant Festuca arundinacea in exotic assemblages was faster than that of the native dominant Paspalum quadrifarium in native assemblages and remnant grasslands. Decomposition of a standard litter (Triticum aestivum) was also faster in exotic assemblages than in native assemblages and remnant grasslands. In a common garden, F. arundinacea showed higher decay rates than P. quadrifarium, which reflected the higher N content and lower C:N of the exotic grass litter. Soil respiration rates were higher in the exotic than in the native assemblages and remnant grasslands. Yet there were no significant differences in soil N availability or net N mineralization between exotic and native assemblages. Our results suggest that exotic grass dominance affected ecosystem function by producing a more decomposable leaf litter and by increasing soil decomposer activity. These changes might contribute to the extended dominance of fast-growing exotic grasses during old-field succession. Further, increased organic matter turnover under novel, exotic communities could reduce the carbon storage capacity of the system in the long term.  相似文献   

17.
18.
Abstract. A distinctive feature of Australian vegetational history is the abruptness of change since European settlement, involving the influx of exotic species and the imposition of exogenous disturbances which are novel in both intensity and character. This can produce two sources of habitat variability: the natural patterns arising from environmental variation, as well as an overlying effect of disturbance. The relative importance of these two types of variables were compared in temperate herbaceous vegetation. Canonical Correspondence Analysis showed that environment and disturbance had similar contributions to floristic variability. Individually, lithology, altitude and soil disturbance were the strongest variables while slope position, grazing and water enrichment were slightly less important. Despite generally low levels of site specificity, groups of species associated with lithology, slope position, altitude and different disturbance regimes were identified. Exotic species were associated with higher levels of disturbance, but showed levels of environmental specialization similar to the native component. Through combination of this analysis with a previous analysis of species richness for the same data set, it became evident that environmental variation mostly resulted in species substitutions while disturbances led to losses of species, with partial replacement by exotics. Synthesizing these results, we identified three broad groups in relation to tolerance of levels of exogenous disturbance: (1) intolerant species - native taxa intolerant of severe disturbances and constituting the species - rich component of the vegetation; (2) tolerant species - exotic and native taxa occurring at both disturbed and undisturbed habitats and (3) disturbance specialists - predominantly exotic species, correlated with high levels of disturbance.  相似文献   

19.
1. A litter‐bag experiment was undertaken in a pond on the margins of a large temperate floodplain in south‐western France to assess the potential influence of the replacement of native by exotic riparian species on organic matter degradation. We determined initial litter chemical composition, breakdown rates and the invertebrate assemblages associated with the litter for five pairs of native dominant and exotic invasive species co‐occurring at different stages along a successional gradient. 2. Litter chemical composition, breakdown rates and abundance and diversity of detritivorous invertebrates were similar for the exotic and native species overall. No overall changes in organic matter degradation can thus be predicted from the replacement of dominant natives by exotic invasives. Breakdown rates were primarily driven by the C/N ratio. 3. One invasive species (Buddleja davidii) showed significantly higher breakdown rates than its native counterpart (Populus nigra), resulting in the disappearance of leaf litter 6 months prior to the next litterfall. In some cases, therefore, invasion by exotic species may result in discontinuity of resource supply for decomposers.  相似文献   

20.
陈家兴  王姝 《广西植物》2023,43(12):2280-2289
极端气候导致的干旱和水淹事件频发,影响了外来植物和本地植物的生长。为了解外来种和本地种植物对干旱和水淹事件发生顺序的响应,探讨草本植物适应水分时间异质性的策略,该文以美国蒙大拿州西部4种本地植物和4种外来植物为研究对象,将所有植物分别进行持续湿润(对照,CK)、水淹-干旱(I-D)和干旱-水淹(D-I)处理,并观测一系列形态和生物量特征的变化。结果表明:(1)与CK相比,D-I和I-D处理均显著降低了外来种的总生物量(P<0.05)。(2)D-I显著降低了本地种早期总生物量、后期地下生物量和根冠比,但显著提高了其后期的相对生长(P<0.05)。(3)D-I处理显著降低了所有植物的地下-地上生物量关系的异速指数,外来种异速指数显著高于本地种(P<0.05)。综上认为,极端事件(水淹和干旱)的发生顺序能改变外来植物和本地植物的生物量分配,早期干旱比后期干旱更容易减少植物生物量的积累,但能促进本地种后期的生长;本地种在环境胁迫下不被降低的总生物量表现说明维持表型稳定的能力较强;D-I处理下本地种和外来种地上和地下生物量关系的分配方式不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号