首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5′-untranslated regions (5′-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.  相似文献   

2.
Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.  相似文献   

3.
Corynebacterium glutamicum with the ability to simultaneously utilize glucose/pentose mixed sugars was metabolically engineered to overproduce shikimate, a valuable hydroaromatic compound used as a starting material for the synthesis of the anti-influenza drug oseltamivir. To achieve this, the shikimate kinase and other potential metabolic activities for the consumption of shikimate and its precursor dehydroshikimate were inactivated. Carbon flux toward shikimate synthesis was enhanced by overexpression of genes for the shikimate pathway and the non-oxidative pentose phosphate pathway. Subsequently, to improve the availability of the key aromatics precursor phosphoenolpyruvate (PEP) toward shikimate synthesis, the PEP: sugar phosphotransferase system (PTS) was inactivated and an endogenous myo-inositol transporter IolT1 and glucokinases were overexpressed. Unexpectedly, the resultant non-PTS strain accumulated 1,3-dihydroxyacetone (DHA) and glycerol as major byproducts. This observation and metabolome analysis identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-catalyzed reaction as a limiting step in glycolysis. Consistently, overexpression of GAPDH significantly stimulated both glucose consumption and shikimate production. Blockage of the DHA synthesis further improved shikimate yield. We applied an aerobic, growth-arrested and high-density cell reaction to the shikimate production by the resulting strain and notably achieved the highest shikimate titer (141 g/l) and a yield (51% (mol/mol)) from glucose reported to date after 48 h in minimal medium lacking nutrients required for cell growth. Moreover, comparable shikimate productivity could be attained through simultaneous utilization of glucose, xylose, and arabinose, enabling efficient shikimate production from lignocellulosic feedstocks. These findings demonstrate that C. glutamicum has significant potential for the production of shikimate and derived aromatic compounds.  相似文献   

4.
The myo-inositol level of plasma was determined during pre- and postnatal development of the rat. Fetal concentrations exceeded those of maternal rats by nearly 10-fold. Immediately after birth, the myo-inositol level decreased but was maintained at values 3–4 times that of the lactating dams. The cyclitol content of rat milk was high and rose during lactation to a maximum of 1.6 mM.The biosynthesis of myo-inositol from glucose 6-phosphate is catalyzed by glucose 6-phosphate:l-myo-inositol-1-phosphate cyclase and l-myo-inositol-1-phosphate phosphatase. The activity of both enzymes was monitored in fetal and neonatal liver, maternal liver, placenta, and mammary gland. Results indicated that the fetal liver accounted for over 48% of the total carcass cyclase and 26% of the total carcass phosphatase activity. Developmental changes correlated well with the pattern of myo-inositol in fetal rat plasma. Similarly, the enzymes of the myo-inositol biosynthetic pathway increased in rat mammary gland in close agreement with the myo-inositol content of milk and diminished to prelactation activities within 24 hr after the onset of involution.The myo-inositol level of colostrum and milk of five human subjects was highest (2.8 mM) before birth and decreased to 40% of that level 5 days postpartum, where it remained for at least 3 weeks. Even after 7 months of lactation, the milk of one subject contained 3–4-fold more myo-inositol than all commercial infant formulas analyzed.  相似文献   

5.
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na+- or H+-linked myo-inositol transporters. While Na+-coupled myo-inositol transporters are found exclusively in the plasma membrane, H+-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H+-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.  相似文献   

6.
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD+, essential for cellular metabolism, energy production, and DNA repair. NAMPT has been extensively studied because of its critical role in these cellular processes and the prospect of developing therapeutics against the target, yet how it regulates cellular metabolism is not fully understood. In this study we utilized liquid chromatography-mass spectrometry to examine the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and serine biosynthesis in cancer cells and tumor xenografts. We show for the first time that NAMPT inhibition leads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the reduced availability of NAD+ for the enzyme. The attenuation of glycolysis results in the accumulation of glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting carbon overflow into the pentose phosphate pathway as evidenced by the increased intermediate levels. The attenuation of glycolysis also causes decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby reducing carbon flow into serine biosynthesis and the TCA cycle. Labeling studies establish that the carbon overflow into the pentose phosphate pathway is mainly through its non-oxidative branch. Together, these studies establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the central metabolic basis of NAMPT inhibition responsible for ATP depletion, metabolic perturbation, and subsequent tumor growth inhibition. These studies also suggest that altered metabolite levels in tumors can be used as robust pharmacodynamic markers for evaluating NAMPT inhibitors in the clinic.  相似文献   

7.
A synthetic pathway has been constructed for the production of glucuronic and glucaric acids from glucose in Escherichia coli. Coexpression of the genes encoding myo-inositol-1-phosphate synthase (Ino1) from Saccharomyces cerevisiae and myo-inositol oxygenase (MIOX) from mice led to production of glucuronic acid through the intermediate myo-inositol. Glucuronic acid concentrations up to 0.3 g/liter were measured in the culture broth. The activity of MIOX was rate limiting, resulting in the accumulation of both myo-inositol and glucuronic acid as final products, in approximately equal concentrations. Inclusion of a third enzyme, uronate dehydrogenase (Udh) from Pseudomonas syringae, facilitated the conversion of glucuronic acid to glucaric acid. The activity of this recombinant enzyme was more than 2 orders of magnitude higher than that of Ino1 and MIOX and increased overall flux through the pathway such that glucaric acid concentrations in excess of 1 g/liter were observed. This represents a novel microbial system for the biological production of glucaric acid, a “top value-added chemical” from biomass.  相似文献   

8.
Seaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce l-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of l-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered l-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for l-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased l-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and l-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L−1 l-lysine from mannitol at a yield of 0.26 mol mol−1 and a maximum productivity of 2.1 g L−1 h−1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to l-lysine at a yield of 0.27 C-mol C-mol−1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided l-lysine at a yield of 0.40 C-mol C-mol−1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.  相似文献   

9.
Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.  相似文献   

10.
Ultraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constructed by expressing four genes from Actinosynnema mirum DSM 43827, which are responsible for the biosynthesis of shinorine from sedoheptulose-7-phosphate in the pentose phosphate pathway. Deletion of transaldolase encoding gene improved shinorine production by 5.2-fold. Among the other genes in pentose phosphate pathway, overexpression of 6-phosphogluconate dehydrogenase encoding gene further increased shinorine production by 60% (19.1 mg/L). The genetic engineering of the pentose phosphate pathway in C. glutamicum improved shinorine production by 8.3-fold in total, and could be applied to produce the other chemicals derived from sedoheptulose-7-phosphate.  相似文献   

11.
An enzyme capable of hydrolyzing myo-inositol 1-phosphate was identified and partially purified from the erythrocytes of 7-day chicks. It has an apparent molecular weight of approximately 60,000, is heat stable, and has a pH of optimal activity between 6.5 and 7.3. In most regards the kinetic properties are similar to the myo-inositol 1-phosphatases of rat testis, rat mammary gland, bovine brain, and of yeast. The enzyme has an absolute requirement for a divalent cation; Mg2+ gave the greatest activity, with an optimal concentration of 2.5 mm in the standard assay employed. Zn2+, Co2+, and Mn2+ supported activity to a lesser degree. Activity was inhibited by NaF, HgCl2, and p-hydroxymercuribenzoate. myo-Inositol tetrakis (dihydrogen phosphate) and myo-inositol 1,3,4,5,6-pentakis (dihydrogen phosphate) were not substrates for this enzyme and inhibited the hydrolysis of myo-inositol 1-phosphate. Unlike other phosphatases for myo-inositol 1-phosphate, this enzyme cleaved myo-inositol 1-phosphate (Km = 8.6 × 10?5 m) and myo-inositol 2-phosphate (Km = 2.86 × 10?4 m) at approximately the same rates. It also hydrolyzed 2′-purine and pyrimidine ribonucleotides about as well as myo-inositol 1-phosphate, but was only 20–30% as active against the 3′-ribonucleotides and had scarcely any activity against the 5′-ribonucleotides. The amount of enzyme activity in erythrocytes of embryos, chicks, and mature chickens was the same (~29 μmol/ml rbc/h). The biological function of this enzyme in avian erythrocytes is unclear at this time. Other tissues containing this phosphatase also have an enzyme which synthesizes myo-inositol 1-phosphate from glucose 6-phosphate, but we have been unable to detect the presence of such an enzyme in avian erythrocytes.  相似文献   

12.
Summary The biosynthesis of phytic acid is known to be catalyzed by enzymes causing a stepwise phosphorylation of myo-inositol or 1l-myo-inositol 1-phosphate with adenosine triphosphate as phosphate donor. The kinases responsible for these phosphorylations in Lemna gibba were purified by affinity chromatography on a Sepharose gel carrying myo-inositol 2-phosphate at the binding site. Three fractions with enzymatic activity could be identified; in the first one, we find myo-inositol kinase (EC 2.7.1.64) phosphorylating myo-inositol to 1l-myo-inositol 1-phosphate; the second one brings about the phosphorylation of myo-inositol trisphosphate to phytic acid; the third one phosphorylates myo-inositol 1-phosphate to a myo-inositol trisphosphate. An enzyme oxidizing 1l-myo-inositol 1-phosphate to an uronic acid derivative is found in the first two fractions. In the presence of ATP, Mg2+ Mn2+, and the second and the third enzyme fractions in an appropriate mixture, 1l-myo-inositol 1-phosphate can be phosphorylated to phytic acid. The structure of the trisphosphate acting as an intermediate is not yet known.  相似文献   

13.
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6 g/L, with the yield of 0.48 g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6 g/L 3-HP at a yield of 0.51 g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.  相似文献   

14.
Metabolism of myo-Inositol by Germinating Lilium longiflorum Pollen   总被引:1,自引:1,他引:0  
Lilium Iongiflorum pollen tubes absorbed myo-[2-3H]inositol produced labeled metabolites which were separated into acid-soluble and -insoluble fractions. The soluble fraction contained labeled myo-inositol, d-glucuronic acid, myo-inositol 1-phosphate, and at least three other unidentified compounds. The acid-insoluble fraction contained considerable chloroformsoluble radioactivity and a labeled residue. Labeled myo-inositol was also absorbed by germinating pollen prior to the time of pollen tube initiation; however, there was a marked reduction in amounts of myo-inositol 1-phosphate and glucuronic acid produced by this pollen in comparison with growing pollen tubes.  相似文献   

15.
d-glucaric acid has been explored for a myriad of potential uses, including biopolymer production and cancer treatment. A biosynthetic route to produce d-glucaric acid from glucose has been constructed in Escherichia coli (Moon et al., 2009b), and analysis of the pathway revealed myo-inositol oxygenase (MIOX) to be the least active enzyme. To increase pathway productivity, we explored protein fusion tags for increased MIOX solubility and directed evolution for increased MIOX activity. An N-terminal SUMO fusion to MIOX resulted in a 75% increase in d-glucaric acid production from myo-inositol. While our directed evolution efforts did not yield an improved MIOX variant, our screen isolated a 941 bp DNA fragment whose expression led to increased myo-inositol transport and a 65% increase in d-glucaric acid production from myo-inositol. Overall, we report the production of up to 4.85 g/L of d-glucaric acid from 10.8 g/L myo-inositol in recombinant E. coli.  相似文献   

16.
Radiolabeled d-[1-3H]glucose was fed by imbibition under sterile conditions to bean (Phaseolus vulgaris L.) seeds. After 72 and 96 hours of feeding, the 3H was located in uronic acid and pentose residues as well as hexose residues of cell wall polysaccharides in growing hypocotyl and root. Free myo-inositol present in cotyledons, hypocotyl, and root also contained 3H, showing that de novo synthesis of myo-inositol from [1-3H]glucose did occur during the first 72 hours of germination. More than 90% of the labeled, free myo-inositol was present in the cotyledons. The 3H percentage in trifluoroacetic acid-soluble arabinose residues of cell wall polysaccharides from 72-hour-old bean hypocotyls was only half of their mole percentage. On the other hand, 3H percentages in hexose residues were higher than their mole percentages. The results suggest that myo-inositol is synthesized from reserve sugars during the very early stages of germination, and that the newly synthesized myo-inositol, as well as that stored in cotyledons, can be used for the construction of new hypocotyl and root cell wall polysaccharides after conversion into uronic acids and pentoses via the myo-inositol oxidation pathway.  相似文献   

17.
The product of myo-inositol-1-phosphate synthase, EC 5.5.1.4, from mature pollen of Lilium longiflorum Thunb., cv Ace (Easter lily) and that of myo-inositol kinase, EC 2.7.1.64, from wheat germ has been identified as 1l-myo-inositol-1-phosphate by gas chromatography of its trimethylsilyl-methyl phosphate derivative on a glass capillary column bearing a chiral phase.  相似文献   

18.
The hydrogen isotope-effect that occurs in vitro during myo-inositol 1-phosphate synthase-catalyzed conversion of d-[5-3H]glucose 6-phosphate into myo-[2-3H]inositol 1-phosphate has been used to compare the functional role of the nucleotide sugar oxidation-pathway with that of the myo-inositol oxidation-pathway in germinating lily pollen. Results reveal a significant difference between the 3H/14C ratios of glucosyl and galactosyluronic residues from pectinase-amyloglucosidase hydrolyzates of the 70 % ethanol-insoluble fraction of d-[5-3H, 1-14-C]glucose-labeled, germinating lily pollen. This isotope effect at C-5 of d-glucose that occurred during its conversion into d-galactosyluronic residues of pectic substance is not explained by loss of 3H when UDP-d-[5-3H, 1-14C]glucose is oxidized by UDP-d-glucose dehydrogenase from germinating lily pollen. The evidence obtained from this study favors a functional role for the myo-inositol oxidation pathway during in vivo conversion of glucose into galactosyluronic residues of pectin in germinating lily pollen.  相似文献   

19.
myo-Inositol 1-phosphate synthase (EC 5.5.1.4) and 1l-myo-inositol 1-phosphatase (EC 3.1.3.25) were isolated and partially purified from lactating rat mammary gland. The synthase had an apparent molecular weight of 290,000 as determined by gel filtration; its pH optimum was 7.2, and the Km for glucose 6-phosphate was 0.5 mm. No other compound could act as a substrate, but the synthase was inhibited 100% by d-gluconic acid 6-phosphate, 54% by d-fructose 6-phosphate, 31.8% by d-galactose 6-phosphate, and 29.6% by d-mannose 6-phosphate each at 5mm. Activity was stimulated 2-fold by the addition of 1 mm NAD+ and 40% by 14 mm ammonium ions, whereas it was inhibited by 30% in the presence of 1 mm NADH and by 93.6% when incubated with 1 mmp-mercuribenzoate. Reagents which interfere with Schiff-base formation, pyridoxal 5′-phosphate and trinitrobenzenesulfonate, inhibited the enzyme, but EDTA was without effect.The 1l-myo-inositol 1-phosphatase from rat mammary tissue appears to exist in a native tetrameric form of 210,000 as determined by gel filtration which, upon heating at 70 °C for 15 min, is converted into a stable monomer of approximately 52,000. Mg2+ (1.5 mm) was an absolute requirement for activity though Mn2+ gave 17% of the activity provided by Mg2+. Sodium, potassium, or ammonium ions were stimulatory, but lithium ions were strongly inhibitory. 1l-myo-Inositol 1-phosphatase specifically cleaved 1l-myo-inositol 1-phosphate and was 60% as active toward l-α-glycerol phosphate with only minor activity toward other phosphorylated compounds. The pH optimum was 8.0 and the Km for 1l-myo-inositol 1-phosphate was 0.8 mm.  相似文献   

20.
The effects of streptozotocin-induced hyperglycemia on de novo myo-inositol biosynthesis in rat testis was examined. Testicular glucose and glucose 6-phosphate levels increased significantly 10 and 12 h after stretozotocin injection, respectively. However, testis myo-inositol content did not increase appreciably until 24 h following injection of the drug. Seventy-two hours after streptozotocin administration, testis myo-inositol levels were 2.7-fold higher in diabetic rats than in controls injected with citrate buffer. No changes were observed in the Specific activities of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and 1-l-myo-inositol-1-phosphatase (EC 3.1.3.25). However, hyperglycemic rats displayed testicular glucose and glucose 6-phosphate levels approximately 4- and 2-fold in excess of control values, respectively. Insulin treatment of diabetic rats resulted in the lowering of plasma glucose, and testis glucose 6-phosphate to normal or below normal levels within hours. Inositol levels remained significantly elevated compared with control animals, although slightly lower than that observed for untreated diabetic rats. Streptozotocin diabetic rats had a significantly decreased testis cytosolic NAD+NADH ratio compared with control animals 72 h after injection. The potential role of testis hexokinase distribution in the regulation of glucose 6-phosphate and myo-inositol biosynthesis in normal and diabetic rats was investigated. No significant differences in testis hexokinase distribution or in the kinetic characteristics of the soluble and particulate hexokinase activities were observed. Testicular sperm counts in streptozotocin diabetic rats were not significantly different from control values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号