首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Spinal excitation and inhibition decrease as humans age   总被引:7,自引:0,他引:7  
Although changes in the soleus H-reflex (an electrical analog of the tendon jerk) with age have been examined in a number of studies, some controversy remains. Also, the effect of age on inhibitory reflexes has received little attention. The purpose of this paper was to examine some excitatory and inhibitory reflexes systematically in healthy human subjects having a wide range of ages. We confirmed that both the maximum H-reflex (Hmax) and the maximum M-wave (Mmax) (from direct stimulation of motor axons) decrease gradually with age. The decrease in Hmax was larger so the Hmax/Mmax ratio decreased dramatically with age. Interestingly, the modulation of the H-reflex during walking was essentially the same at all ages, suggesting that the pathways that modulate the H-reflex amplitude during walking are relatively well preserved during the aging process. We showed for the first time that the short-latency, reciprocal inhibitory pathways from the common peroneal nerve to soleus muscle and from the tibial nerve to the tibialis anterior muscle also decreased with age, when measured as a depression of ongoing voluntary activity. These results suggest that there may be a general decrease in excitability of spinal pathways with age. Thus, the use of age-matched controls is particularly important in assessing abnormalities resulting from disorders that occur primarily in the elderly.  相似文献   

2.
The purpose of this study was to examine the effects of aging on posture-related changes of the stretch reflex excitability in the ankle extensor, soleus (SOL), and flexor, tibialis anterior (TA) muscles. Fourteen neurologically normal elderly (mean 68 ± 6 years) and 12 young (mean 27 ± 3 years) subjects participated. Under two postural conditions, upright standing (STD) and sitting (SIT), stretch reflex electromyographic (EMG) responses in the SOL/TA muscle were elicited by imposing rapid ankle dorsi-/plantar-flexion. Under the SIT condition, subjects were asked to keep the SOL background EMG level, which is identical to that under the STD condition. In the SOL muscle, both groups showed significant enhancement of the short-latency stretch reflex (SLR) response when the posture changed from SIT to STD. In the TA muscle, the young group showed significant enhancement of the middle- (MLR) and long-latency stretch reflex (LLR) when the posture changed from SIT to STD; no such modulation was observed in the elderly group. Since the TA stretch reflex responses under the STD condition were comparable in the young and elderly groups, the lack of posture-related modulation of the TA muscle in the elderly group might be explained by augmented stretch reflex excitability under the SIT condition. The present results suggest that the (1) SOL SLR responses are modulated both in the young and elderly subjects when the posture is changed from SIT to STD, (2) TA MLR and LLR responses are not modulated in the elderly subjects when the posture is changed from SIT to STD, while each response is same between the young and elderly in STD, and (3) the effect of aging on the posture-related stretch reflex differs in the SOL and TA muscles.  相似文献   

3.
The efficacy of type Ia synapse on alpha-motoneurons of soleus and lateral gastrocnemius muscles has been investigated, using the H-reflex technique, in athletes engaged in sports requiring very rapid and intense contractions (sprinters and volley-ball players) as well as in non-trained subjects. It has been observed, in both muscles, that the ratio between the mean value of the maximal reflex response (Hmax) and the mean value of the maximal direct response (Mmax) elicited upon electrical stimulation of the tibial nerve is significantly smaller in athletes trained for explosive-type movements than in non-trained subjects. This difference in the Hmax: Mmax ratio was dependent on a smaller amplitude of Hmax and not on a greater amplitude of Mmax. No significant differences were observed between sprinters and volley-ball players. In both trained and non-trained subjects, soleus and lateral gastrocnemius muscles displayed significant differences in Hmax: Mmax ratio and Mmax amplitude but not in Hmax amplitude. Since the H-response is considered to be due mainly to activation of the smallest motoneurons in the motoneuronal pools, the difference in Hmax amplitude and Hmax: Mmax ratio between athletes and non-trained subjects could have been dependent on a lower incidence of these motoneurons in the athletes. This is in accord with the mechanical needs of muscles during explosive-type power training. Although this difference may have been wholly determined genetically, the possibility is discussed as to whether the lower incidence in sprinters and volley-ball players of small motoneurons could have been related to a training-induced transformation of small and slow motoneurons into large and fast ones.  相似文献   

4.
The purpose of this study was to test whether the spinal reflex excitability of the soleus muscle is modulated as posture changes from a supine to a passive upright position. Eight healthy subjects (29.6 ± 5.4 yrs) participated in this study. Stretch and H-reflex responses were elicited while the subjects maintained passive standing (ST) and supine (SP) postures. The passive standing posture was accomplished by using a gait orthosis to which a custom-made device was mounted to elicit stretch reflex in the soleus muscle. This orthosis makes it possible to elicit stretch and H-reflexes without background muscle activity in the soleus muscle. The results revealed that the H-reflex amplitude in the ST was smaller than that in the SP condition, which is in good agreement with previous reports. On the other hand, the stretch reflex was significantly larger in the ST than in the SP condition. Since the experimental conditions of both the stretch and H-reflex measurements were exactly the same, the results were attributed to differences in the underlying neural mechanisms of the two reflex systems: different sensitivity of the presynaptic inhibition onto the spinal motoneuron pool and/or a change in the muscle spindle sensitivity.  相似文献   

5.
In humans, an inhibitory via Ia afferent pathway from the medial gastrocnemius (MG) to the soleus (SOL) motoneuron pool has been suggested. Herein, we examined the relation between MG fascicle length changes and the SOL H-reflex modulation during passive knee movement. Twelve subjects performed static and passive (5° s?1) knee movement tasks with the ankle immobilized using an isokinetic dynamometer in sitting posture. The maximal H- and M-waves were measured at four target angles (20°, 40°, 60°, and 80° flexion from full knee extension). The MG fascicles length and velocity were measured using a B-mode ultrasonic apparatus. Results demonstrated that the SOL Hmax/Mmax; i.e., ratio of the maximal H- to M-waves, was attenuated with increasing MG fascicle length in static tasks. The SOL Hmax/Mmax at 20° was significantly attenuated compared with 60° and 80° with increasing MG fascicle length and lengthening velocity in passive knee extension. However, no significant differences in the SOL Hmax/Mmax were found across the target angles in the passive knee flexion task. In conclusion, as muscle spindles increase their discharge with lengthening fascicle velocity, but keep silent when fascicles shorten, our data suggest that lengthening the MG facilitates an inhibitory Ia pathway from MG to SOL, and modulates SOL motoneuron activity during movements.  相似文献   

6.
The study investigated relations between effects of repeated ankle plantar-flexion movements exercise on the soleus Hoffmann (H) reflex and on postural body sway when maintaining upright stance. Ten young volunteers performed five sets of ankle plantar-flexions of both lower limbs. Assessment of the feet centre-of-pressure (COP) displacement and H-reflex tests were carried out in quiet stance before, during and after the exercise. H-max and M-max responses were obtained in 8 subjects and reported as the peak-to-peak amplitudes of the right soleus muscle electromyographic waves. Mean dispersion of COP along the antero-posterior direction increased significantly during the exercise; whilst the overall H-reflex response indicated a reduction without a concomitant modification in the M-max response. H-reflex responses, however, varied between participants during the first sets of exercise, showing two main trends of modulation: either depression or early facilitation followed by reduction of the H-reflex amplitude. The extent of reflex modulation in standing position was correlated to the concentric work performed during the exercise (r = 0.85; p < 0.01), but not to the antero-posterior COP dispersion. These results suggest that during a repeated ankle plantar-flexions exercise, modulation of the H-reflex measured in upright stance differs across individuals and is not related to changes of postural sway.  相似文献   

7.
The extent to which motoneuron pool excitability, as measured by the Hoffmann reflex (H-reflex), is affected by an acute bout of whole-body vibration (WBV) was recorded in 19 college-aged subjects (8 male and 11 female; mean age 19 +/- 1 years) after tibial nerve stimulation. H/M recruitment curves were mapped for the soleus muscle by increasing stimulus intensity in 0.2- to 1.0-volt increments with 10-second rest intervals between stimuli, until the maximal M-wave and H-reflex were obtained. After determination of Hmax and Mmax, the intensity necessary to generate an H-reflex approximately 30% of Mmax (mean 31.5% +/- 4.1%) was determined and used for all subsequent measurements. Fatigue was then induced by 1 minute of WBV at 40 Hz and low amplitude (2-4 mm). Successive measurements of the H-reflex were recorded at the test intensity every 30 seconds for 30 minutes post fatigue. All subjects displayed a significant suppression of the H-reflex during the first minute post-WBV; however, four distinct recovery patterns were observed among the participants (alpha = 0.50). There were no significant differences between genders across time (P = 0.401). The differences observed in this study cannot be explained by level or type training. One plausible interpretation of these data is that the multiple patterns of recovery may display variation of muscle fiber content among subjects. Future investigation should consider factors such as training specificity and muscle fiber type that might contribute to the differing H-reflex response, and the effect of WBV on specific performance measures should be interpreted with the understanding that there may be considerable variability among individuals. Recovery times and sample size should be adjusted accordingly.  相似文献   

8.
Diverging results have been reported regarding the modulation and amplitude of the soleus H-reflex measured during human walking and running. A possible explanation to this could be the use of too high stimulus strength in some studies while not in others. During activities like walking and running it is necessary to use a small M-wave to control the effective stimulus strength during all phases of the movement. This implies that the descending part of the H-reflex recruitment curve is being used, which may lead to an unwanted suppression of the H-reflex due to limitations imbedded within the H-reflex methodology itself.Accordingly, the purpose of the present study was to study the effect on the soleus H-reflex during walking and running using stimulus intensities normally considered too high (up to 45% Mmax).Using M-waves of 25–45% Mmax as opposed to 5–25% Mmax showed a significant suppression of the peak H-reflex during the stance phase of walking, while no changes were observed during running. No differences were observed regarding modulation pattern. So a possible use of too high stimulus intensity cannot explain the differences mentioned. The surprising result in running may be explained by the much higher voluntary muscle activity, which implies the existence of a V-wave influencing the H-reflex amplitude in positive direction.  相似文献   

9.
The quiet stance is a complicated motor act requiring sophisticated sensorimotor integration to balance an artificial inverted pendulum with the ankle musculature. The objective of this study was to characterize the effects of stance pattern (bilateral stance vs. unilateral stance) and directional influence of light finger touch (medial–lateral vs. anterior–posterior) in unilateral stance upon responsiveness of the soleus H reflex. Sixteen healthy volunteers (mean age, 24.25 ± 1.77 years) participated in four postural tasks with the eyes open, including the bilateral stance (BS), the unilateral stance without finger touch (USNT), and with finger touch in the medial–lateral direction (USML) and anterior–posterior direction (USAP). Meanwhile, the soleus H reflex, the pre-stimulus background activity of ankle antagonist pairs, and center of pressure (CoP) sway were measured. In reference to the BS, the USNT resulted in a significant stance effect on suppression of the soleus H reflex (H/Mmax) associated with enhancement of CoP sway. Among the conditions of unilateral stance, there was a marked directional effect of finger touch on modulation of the H/Mmax. A greater disinhibition of the H/Mmax in consequence to light touch in the ML direction than in the AP direction was noted (H/Mmax: USML > USAP > USNT). This directional modulation of the soleus H reflex concurred with haptic stabilization of posture in unilateral stance, showing a more pronounced reduction in CoP sway in the USML condition than in the USAP condition. However, alteration in postural sway and modulation of the soleus H reflex were not mutually correlated when stance pattern or touch vector varied. In conclusion, gating of the soleus H reflex indicated adaptation of an ankle strategy to stance pattern and haptic stabilization of posture. Relative to bilateral stance, postural maintenance in unilateral stance relied less on reflexive correction of the soleus. When finger touch was provided in line with prevailing postural threat in the lateral direction, postural stability in unilateral stance was better secured than finger touch in anterior–posterior direction, resulting in more pronounced disinhibition of the monosynaptic reflex pathway.  相似文献   

10.
V-wave, F wave and H-reflex responses of soleus were used to determine neural adaptations to 2-week immobilization and whether muscle vibration intervention during immobilization would attenuate the negative adaptations induced by immobilization. Thirty subjects were divided into the ankle immobilization group and the immobilization with muscle vibration group. Mechanical vibrations with constant low amplitude (0.3 mm) were applied (12 × 4 min daily) with a constant frequency of 100 Hz on the soleus muscle of the subjects in vibration group during the ankle immobilization period. Soleus maximal M-wave (Mmax) and H-reflex (Hmax) were evoked at rest. F-wave was recorded by supramaximal stimulation delivered at rest and V-wave during maximum voluntary contraction (MVC). The EMG during MVC was represented by its root-mean-square (RMS) value. Each subject was examined before and after 2 weeks of immobilization. Results showed that following 2 weeks of immobilization, Mmax, Hmax and F wave all did not change with immobilization in either group (P > 0.05). After 2 weeks of immobilization, significant reductions in V/Mmax (of 30.78%) (P < 0.01) and EMG RMS (24.82%) (P < 0.001) were found in the immobilization group. However, no significant changes occurred in the immobilization with muscle vibration group. Such findings suggested that 2 weeks of immobilization resulted in neural impairments as evidenced by the reduction in EMG and V wave, and that such decrease was prevented by the intervention of muscle vibration during the immobilization period.  相似文献   

11.
The relationship between the size of the soleus (Sol) Hoffmann (H-) reflex and the level of background (BG) electromyographic (EMG) activity was examined during plantarflexing at different force levels. The experiments were carried out on seven healthy male subjects aged 20-37 years. The subjects were asked to perform fast plantarflexion under a reaction-time condition. The amounts of contraction force were 10, 20, 50 and 80% of maximum voluntary contraction (MVC). Since the maximum size of the M-wave (Mmax) changed systematically during the plantarflexion, we tried to maintain the size of the reference M-wave, an indicator of the efficiency of the electrical stimulation, at a constant value (20% of Mmax) throughout the experiment. The size of the H-reflex was rapidly increased at the very beginning of the movement, and then it tended to decrease in the later phase of the movement. Consequently, even with the same level of BG EMG, the size of the H-reflex was always larger in the early rising phase of the EMG activity than in the later falling phase. The maximum size of the H-reflex was poorly correlated with the force exerted. In contrast, the size of the F-response was proportional to the force exerted. The non-linear relationship between the size of the H-reflex and the BG EMG suggests that the level of the presynaptic inhibition onto Ia terminals was modified depending on the required force level and during the course of the movement.  相似文献   

12.
Hypoxia and monosynaptic reflexes in humans   总被引:1,自引:0,他引:1  
The recruitment curves of the monosynaptic Hoffmann (H) reflex and of the direct motor (M) excitation of alpha-motor fibers of the posterior popliteal nerve were studied in seven human subjects in normoxic and hypoxic conditions at sea level. The amplitude of the H and M responses were determined from the computerized full-wave rectified and integrated surface electromyographic (EMG) signal derived from bipolar surface electrodes placed over the soleus muscle. Hypoxic exposure [end-tidal O2 fraction (FETO2) = 0.066 +/- 0.003 and end-tidal CO2 fraction (FETCO2) = 0.0504 +/- 0.001 (SE)] did not affect the maximal M (Mmax) response but decreased significantly (7%) the maximal H (Hmax) response. The Hmax/Mmax ratio decreased from 0.60 to 0.53. Furthermore, by fitting the rising phase of the recruitment curves of the H and M responses vs. stimulus intensity with linear regressions, hypoxia was found to produce a significant decrease of similar magnitude (6%) in the threshold of both the H and M responses with no change in slope. Using a constant stimulus strength eliciting an H response of half the maximum (H50%) of the control conditions, hypoxia resulted in a 50% increase in the amplitude of the H response within 12 min. These results suggest that the effects of hypoxia on the nervous system consist of a direct depolarizing action on the peripheral alpha-fibers and 1A sensory fibers and of a central effect on supraspinal structures affecting the spinal alpha-motoneurons.  相似文献   

13.
H-reflexes were elicited in the soleus muscle in subjects standing on a force platform in a water tank, under different loading conditions at the ankle joint. The joint loading was altered by changing the combination of buoys and weights attached to lower limb segments, while the total body mass was kept the same. The results revealed that as the joint load was reduced the H-reflex was significantly enhanced as compared to that under the control condition, while it decreased as the joint load was increased, despite the same background EMG activity level. It was demonstrated that the augmented load information from the lower limb joints has an inhibitory effect on the soleus H-reflex, suggesting that this might be one of underlying neural mechanisms responsible for the suppression of H-reflex during human upright standing.  相似文献   

14.
The purpose of this study was to determine the effects of homosynaptic depression (HD) on spectral properties of the soleus (SOL) H-reflex. Paired stimulations, separated by 100?ms, were used to elicit an unconditioned and conditioned H-reflex in the SOL muscle of 20 participants during quiet standing. Wavelet and principal component analyses were used to analyze features of the time-varying spectral properties of the unconditioned and conditioned H-reflex. The effects of HD on spectral properties of the H-reflex signal were quantified by comparing extracted principal component scores. The analysis extracted two principal components: one associated with the intensity of the spectra and one associated with its frequency. The scores for both principal components were smaller for the conditioned H-reflex. HD decreases the spectral intensity and changes the spectral frequency of H-reflexes. These results suggest that HD changes the recruitment pattern of the motor units evoked during H-reflex stimulations, in that it not only decreases the intensity, but also changes the types of motor units that contribute to the H-reflex signal.  相似文献   

15.
There exists extensive evidence supporting the presence of reflex modulation in humans during a variety of motor tasks. The soleus H-reflex has been shown to be modulated during static and dynamic balance conditions as well as during various motor tasks. The purpose of this study was to examine the effects of two different stance positions and visual conditions on soleus H-reflex gain in 15 apparently healthy adults (mean age = 30.27 ± 6.92 yrs). The soleus H-reflexes were examined in two experimental stance conditions: two-legged (stable) and one-leg (unstable), and two visual conditions: eyes open and eyes closed. To assess the reflex gain, subjects performed ten trials under each of the four conditions and a soleus H-reflex was elicited during the performance of each trial. For each condition the peak-to-peak amplitude of the H-reflex and the EMG activity 50 ms prior to the stimulus was recorded. Differences in the peak-to-peak amplitudes of the soleus H-reflex for the experimental conditions were compared with a 2 × 2 (Stance × Vision) repeated measures ANOVA. The level of significance was p < 0.05. Results demonstrated significant differences in reflex gain for both the vision (Fl,15 = 4.87, p < 0.05) and the stance condition (Fl,15 = 14.86, p < 0.05). Although both the stance condition and vision significantly affected the H-reflex gain, there was no interaction between these two variables (Fl,15 = 0.17). From these results, we conclude that H-reflex gain was decreased both as stance complexity increased and as visual inputs were removed. Consistent with previous reports, it may be speculated that changes in presynaptic inhibition to the soleus Ia fibers regulate these gain changes. We propose that vision and stability of stance affect soleus H-reflex gain, but do so without any interactive effects.  相似文献   

16.
During human walking, plantar flexor activation in late stance helps to generate a stable and economical gait pattern. Because plantar flexor activation is highly mediated by proprioceptive feedback, the nervous system must modulate reflex pathways to meet the mechanical requirements of gait. The purpose of this study was to quantify ankle joint mechanical output of the plantar flexor stretch reflex response during a novel unexpected gait perturbation. We used a robotic ankle exoskeleton to mechanically amplify the ankle torque output resulting from soleus muscle activation. We recorded lower-body kinematics, ground reaction forces, and electromyography during steady-state walking and during randomly perturbed steps when the exoskeleton assistance was unexpectedly turned off. We also measured soleus Hoffmann- (H-) reflexes at late stance during the two conditions. Subjects reacted to the unexpectedly decreased exoskeleton assistance by greatly increasing soleus muscle activity about 60 ms after ankle angle deviated from the control condition (p<0.001). There were large differences in ankle kinematic and electromyography patterns for the perturbed and control steps, but the total ankle moment was almost identical for the two conditions (p=0.13). The ratio of soleus H-reflex amplitude to background electromyography was not significantly different between the two conditions (p=0.4). This is the first study to show that the nervous system chooses reflex responses during human walking such that invariant ankle joint moment patterns are maintained during perturbations. Our findings are particularly useful for the development of neuromusculoskeletal computer simulations of human walking that need to adjust reflex gains appropriately for biomechanical analyses.  相似文献   

17.
Stretch reflex shows sustained (3-min) increase with heightened sympathetic outflow [Hjortskov N, Skotte J, Hye-Knudsen C, Fallentin N. Sympathetic outflow enhances the stretch reflex response in the relaxed soleus muscle in humans. J Appl Physiol 2005;98:1366–70], but it is unknown if it accompanies a sustained increase in H-reflex. The purpose of the study was to test if there is a sustained facilitation in the H-reflex in the human soleus muscle during a variety of sustained tasks that are known to elevate sympathetic outflow. Mean arterial blood pressure, heart rate, and H- and stretch reflexes in the relaxed soleus muscle were obtained in healthy young adults who performed mental arithmetic, static handgrip exercise, post-handgrip ischemia, and cold stimulation. Each task lasted 3 min with a 3-min rest in between tasks. Data were analyzed for the initial 30 s and entire 3 min of each task. There was a heightened cardiovascular response in all tasks for both durations of analysis. An increase in H-reflex amplitude was not observed for either the initial or entire duration of the analysis. The tasks increased stretch reflex amplitude for both durations of analysis. Invariable H-reflex and sustained facilitation of stretch reflex with heightened sympathetic outflow would imply sympathetic modulation of muscle spindle sensitivity.  相似文献   

18.
The purpose of this study was to determine the ability of the elderly central nervous system to modulate spinal reflex output to functionally decrease a spinally induced balance perturbation. In this case, the soleus H reflex was used as the source of perturbation. Therefore, decreasing (down training) of the soleus H reflex was necessary to counteract this perturbation and to better maintain postural control. In addition to assessing the effect of this perturbation on the H reflex, static postural stability was measured to evaluate possible functional effects. Ten healthy young subjects (age: 27.0 +/- 4.6 yr) and 10 healthy elderly subjects (age: 71.4 +/- 5.1 yr) participated in this study. Subjects underwent balance perturbation on 2 consecutive days. On day 1 of perturbation, significant down training of the soleus H reflex was demonstrated in both young (-20.4%) and elderly (-18.7%) subjects. On day 2 of perturbation, significant down training of the soleus H reflex was again demonstrated in both young (-24.6%) and elderly (-21.0%) subjects. Analysis of static stability after the 2 days of balance perturbation revealed a significant 10.1% decrease in the area of sway in elderly subjects. In conclusion, this study demonstrated that healthy, elderly subjects compared with young subjects were equally capable of down training the soleus H reflex in response to a balance perturbation. Furthermore, the improvement in static stability through balance training may provide further evidence that balance can be retrained and rehabilitated in subjects with decreased reflex function.  相似文献   

19.

Objective

Successful execution of upright locomotion requires coordinated interaction between controllers for locomotion and posture. Our earlier research supported this model in the non-impaired and found impaired interaction in the post-stroke nervous system during locomotion. In this study, we sought to examine the role of the Ia afferent spinal loop, via the H-reflex response, under postural influence during a locomotor task. We tested the hypothesis that the ability to increase stretch reflex gain in response to postural loads during locomotion would be reduced post-stroke.

Methods

Fifteen individuals with chronic post-stroke hemiparesis and 13 non-impaired controls pedaled on a motorized cycle ergometer with specialized backboard support system under (1) seated supported, and (2) non-seated postural-loaded conditions, generating matched pedal force outputs of two levels. H-reflexes were elicited at 90°crank angle.

Results

We observed increased H-reflex gain with postural influence in non-impaired individuals, but a lack of increase in individuals post-stroke. Furthermore, we observed decreased H-reflex gain at higher postural loads in the stroke-impaired group.

Conclusion

These findings suggest an impaired Ia afferent pathway potentially underlies the defects in the interaction between postural and locomotor control post-stroke and may explain reduced ability of paretic limb support during locomotor weight-bearing in individuals post-stroke.

Significance

These results support the judicious use of bodyweight support training when first helping individuals post-stroke to regain locomotor pattern generation and weight-bearing capability.  相似文献   

20.
Previous research has shown that changes in spinal excitability occur during the postural sway of quiet standing. In the present study, it was of interest to examine the independent effects of sway position and sway direction on the efficacy of the triceps surae Ia pathway, as reflected by the Hoffman (H)-reflex amplitude, during standing. Eighteen participants, tested under two different experimental protocols, stood quietly on a force platform. Percutaneous electrical stimulation was applied to the posterior tibial nerve when the position and direction of anteroposterior (A-P) center of pressure (COP) signal satisfied the criteria for the various experimental conditions. It was found that, regardless of sway position, a larger amplitude of the triceps surae H-reflex (difference of 9-14%; P = 0.005) occurred when subjects were swaying in the forward compared with the backward direction. The effects of sway position, independent of the sway direction, on spinal excitability exhibited a trend (P = 0.075), with an 8.9 +/- 3.7% increase in the H-reflex amplitude occurring when subjects were in a more forward position. The observed changes to the efficacy of the Ia pathway cannot be attributed to changes in stimulus intensity, as indicated by a constant M-wave amplitude, or to the small changes in the level of background electromyographic activity. One explanation for the changes in reflex excitability with respect to the postural sway of standing is that the neural modulation may be related to the small lengthening and shortening contractions occurring in the muscles of the triceps surae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号