首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May–August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.  相似文献   

2.
Climate warming has been suggested to augment the risk of infectious disease outbreaks by extending the seasonal window for parasite growth and by increasing the rate of transmission. Understanding how this occurs in parasite‐host systems is important for appreciating long‐term and seasonal changes in host exposure to infection and to reduce species extinction caused by diseases. We investigated how free‐living stages of two soil‐transmitted helminths of the European rabbit (Oryctolagus cuniculus) responded to experimental changes in temperature by performing laboratory experiments with environmental chambers and field manipulations using open‐top‐chambers. This study was motivated by our previous observations that air temperature has increased over the last 30 years in our field site and that during this period intensity of infection of Graphidium strigosum but not Trichostrongylus retortaeformis was positively associated with this temperature increase. Laboratory and field experiments showed that both parasites accelerated egg development and increased hatching rate and larval survival in response to accumulating thermal energy. Both parasites behaved similarly when exposed to diverse temperature regimes, decadal trends, and monthly fluctuations, however, T. retortaeformis was more successful than G. strigosum by showing higher rates of egg hatching and larval survival. Across the months, the first day of hatching occurred earlier in warmer conditions suggesting that climate warming can lengthen the period of parasite growth and host exposure to infective stages. Also, T. retortaeformis hatched earlier than G. strigosum. These findings showed that seasonal changes in intensity, frequency, and duration of daily temperature are important causes of variability in egg hatching and larva survival. Overall, this study emphasizes the important role of climate warming and seasonality on the dynamics of free‐living stages in soil‐transmitted helminths and their contribution to enhance host exposure to parasitic infections. Yet, the ability to infect might ultimately depend on how hosts interact with parasites.  相似文献   

3.
The parasitic wasp Ixodiphagus hookeri parasitizes hard ticks and is therefore considered as a potential candidate for biological control of ticks. However, there are still considerable gaps of knowledge about the biology of I. hookeri, especially for European populations. Thus, the present study was performed to assess important life‐history parameters of the parasitoid in Germany. Field studies accomplished in three successive years revealed that unfed Ixodes ricinus nymphs are infested by the parasitoid at a low but constant rate of 1.9–3.8% and that adult wasps are present only during a short period in late summer. The mean developmental time of wasps in I. ricinus nymphs ranged from 28 to 70 days under constant laboratory conditions and was prolonged in the second half of the year. Bioassays on parasitization and host preference behaviour showed that unfed nymphs of the host species I. ricinus are significantly preferred in experiments, in which unfed and engorged larvae as well as fully engorged nymphs were offered as alternatives. The marsh tick Dermacentor reticulatus was not accepted as an alternative host. Our data show that the investigated I. hookeri populations differ markedly from populations in other regions of the world in many aspects. The adaptation of different strains to local conditions explains the limited success of imported strains in earlier biological control attempts and highlights the importance of doing research to enhance the control potential of native strains.  相似文献   

4.
Questing behavior of Ixodes uriae and their associated seasonal, host-feeding patterns are crucial to our understanding of tick life history strategies and the ecology of diseases that they transmit. Consequently, we quantified questing behavior of nymphs and adult female I. uriae ticks at Gull Island, a seabird colony in Newfoundland, Canada, to examine seasonal variation of off-host and on-host tick activity. We sampled a total of 133 adult Atlantic puffins (Fratercula arctica), 152 puffin chicks, and 145 herring gull (Larus argentatus) chicks for ticks during the breeding seasons of 2004 and 2005. Questing ticks were sampled by dragging a white flannel cloth across the grassy breeding areas during the mo of May, June, July, and August. Nymph questing activity reached a peak during mid-July (79 and 110 individuals/hr in 2004 and 2005, respectively). The prevalence of nymphs and adult female ticks on different seabird hosts varied between years and during the seasons. Puffin chicks had the highest prevalence (above 70% in July) of nymphs in both years and this was correlated with questing activity. Female ticks rarely fed on puffin chicks, but were prevalent on adult puffins and gulls, although prevalence and questing of ticks were not correlated in these hosts. These patterns of off-host and on-host tick activity suggests that I. uriae ticks likely use a combination of questing and passive waiting, e.g., in puffin burrows, to detect hosts, depending on the tick stage and the host species.  相似文献   

5.
The morbidity of tick‐borne encephalitis (TBE) varies yearly by as much as 10‐fold among the people of Western Siberia. This long‐term variation is dependent on many factors such as the density of the tick populations, the prevalence of TBE virus (TBEV) among sub‐adult ticks, the yearly virulence of the TBEV, and prophylactic measures. Here we highlight the role of small mammal hosts in the circulation of TBEV through the ecosystem. Refining classical models of non‐viremic horizontal transmission, we emphasize the recently understood fact that the physiological and immunological status of the small mammal hosts affects the tick and virus‐host interactions. In addition to its theoretical interest, our approach may lead to some practical improvements in the precision of epidemiological forecasts and perhaps in forestalling the severity of outbreaks of TBE, or, at least, in forewarning medical authorities and the general public of impending TBE outbreaks.  相似文献   

6.
The transmission and the persistence of tick-borne infections are strongly influenced by the densities and the structure of host populations. By extending previous models and analysis, in this paper we analyse how the persistence of ticks and pathogens, is affected by the dynamics of tick populations, and by their host densities. The effect of host densities on infection persistence is explored through the analysis and simulation of a series of models that include different assumptions on tick-host dynamics and consider different routes of infection transmission. Ticks are assumed to feed on two types of host species which vary in their reservoir competence. Too low densities of competent hosts (i.e., hosts where transmission can occur) do not sustain the infection cycle, while too high densities of incompetent hosts may dilute the competent hosts so much to make infection persistence impossible. A dilution effect may occur also for competent hosts as a consequence of reduced tick to host ratio; this is possible only if the regulation of tick populations is such that tick density does not increase linearly with host densities.  相似文献   

7.
Abstract The extent to which density‐dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density‐dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long‐term dataset on the distribution of ticks among individual hosts. If density‐dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host–parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re‐analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density‐dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population‐scale increase in the aggregation coefficient is indirect evidence of a density‐dependent process or processes sufficiently strong to produce a population‐wide pattern, and thus also likely to influence population regulation. The direct observation of a density‐dependent process is evidence of at least part of the responsible mechanism.  相似文献   

8.
We report biological data of two generations of Amblyomma triste in laboratory and compared the suitability of different host species. Infestations by larval and nymphal stages were performed on guinea pigs (Cavia porcellus), chickens (Gallus gallus), rats (Rattus norvegicus), rabbits (Oryctolagus cuniculus), wild mice (Calomys callosus), dogs (Canis familiaris) and capybaras (Hydrochaeris hydrochaeris). Infestations by adult ticks were performed on dogs, capybaras and rabbits. Tick developmental periods were observed in an incubator at 27 degrees C and RH 90%. Guinea pigs were the most suitable hosts for larvae and nymphs, followed by chickens. The remaining host species were less suitable for immature ticks as fewer engorged ticks were recovered from them. Mean larval feeding periods varied from 3.8 to 4.7 d between different host species. Mean larval premolt periods ranged from 8.9 to 10.4 d. Nymphal mean feeding periods varied from 4.2 to 6.2 d for ticks fed on different host species. Premolt period of male nymphs (mean: 15.4 d) was significantly longer than that of female nymphs (14.7 d). Female nymphs were significantly heavier than male nymphs. The overall sex ratio of the adult ticks emerged from nymphs was 0.9:1 (M:F). Capybaras were the most suitable host for the tick adult stage as significantly more engorged females were recovered from them and these females were significantly heavier than those recovered from dogs or rabbits. The life cycle of A. triste in laboratory could be completed in an average period of 155 d. The potential role of guinea pigs, birds and capybaras, as hosts for A. triste in nature, is discussed.  相似文献   

9.
Laboratory colonies of Rhytidoponera ants were allowed to prey on the fed and unfed stages of the Australian ticks Aponomma hydrosauri and Amblyomma limbatum. The unfed tick stages had a higher survival than the fed stages. The ants took longer to handle the adult ticks than the nymphs and longer to handle the nymphs than the larvae. The ants also took longer to handle the unfed than fed nymphs, but longer to handle the fed than unfed females. As well as the differences between the tick stages, there was a species effect, with the ants taking longer to handle A. limbatum, and with that tick species having a higher survival than A. hydrosauri after ant predation. These stage and species differences may influence the tick population dynamics. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
Abstract The conservation of threatened vertebrate species and their threatened parasites requires an understanding of the factors influencing their distribution and dynamics. This is particularly important for species maintained in conservation reserves at high densities, where increased contact among hosts could lead to increased rates of parasitism. The tuatara (Sphenodon punctatus) (Reptilia: Sphenodontia) is a threatened reptile that persists at high densities in forests (~ 2700 tuatara/ha) and lower densities in pastures and shrubland (< 200 tuatara/ha) on Stephens Island, New Zealand. We investigated the lifecycles and seasonal dynamics of infestation of two ectoparasites (the tuatara tick, Amblyomma sphenodonti, and trombiculid mites, Neotrombicula sp.) in a mark‐recapture study in three forest study plots from November 2004 to March 2007, and compared infestation levels among habitat types in March 2006. Tick loads were lowest over summer and peaked from late autumn (May) until early spring (September). Mating and engorgement of female ticks was highest over spring, and larval tick loads subsequently increased in early autumn (March). Nymphal tick loads increased in September, and adult tick loads increased in May. Our findings suggest the tuatara tick has a 2‐ or 3‐year lifecycle. Mite loads were highest over summer and autumn, and peaked in March. Prevalences (proportion of hosts infected) and densities (estimated number of parasites per hectare) of ticks were similar among habitats, but tick loads (parasites per host) were higher in pastures than in forests and shrub. The prevalence and density of mites was higher in forests than in pasture or shrub, but mite loads were similar among habitats. We suggest that a higher density of tuatara in forests may reduce the ectoparasite loads of individuals through a dilution effect. Understanding host–parasite dynamics will help in the conservation management of both the host and its parasites.  相似文献   

11.
12.
Infestation by the nest‐dwelling Ixodes hexagonus Leach and the exophilic Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) on the Northern white‐breasted hedgehog, Erinaceus roumanicus (Erinaceomorpha: Erinaceidae), was investigated during a 4‐year study in residential areas of the city of Poznań, west‐central Poland. Of 341 hedgehogs, 303 (88.9%) hosted 10 061 Ixodes spp. ticks encompassing all parasitic life stages (larvae, nymphs, females). Ixodes hexagonus accounted for 73% and I. ricinus for 27% of the collected ticks. Male hedgehogs carried significantly higher tick burdens than females. Analyses of seasonal prevalence and abundance of I. hexagonus revealed relatively stable levels of infestation of all parasitic stages, with a modest summer peak in tick abundance noted only on male hosts. By contrast, I. ricinus females and nymphs peaked in spring and declined steadily thereafter in summer and autumn, whereas the less abundant larvae peaked in summer. This is the first longterm study to evaluate the seasonal dynamics of both tick species on populations of wild hedgehogs inhabiting urban residential areas.  相似文献   

13.
Expansion of the host range in phytophagous insects depends on their ability to form an association with a novel plant through changes in host‐related traits. Phenotypic plasticity has important effects on initial survival of individuals faced with a new plant, as well as on the courses of evolutionary change during long‐term adaptation to novel conditions. Using experimental populations of the seed beetle that evolved on ancestral (common bean) or novel (chickpea) host and applying reciprocal transplant at both larval and adult stage on the alternative host plant, we studied the relationship between the initial (plastic) phases of host‐shift and the subsequent stages of evolutionary divergence in life‐history strategies between populations exposed to the host‐shift process. After 48 generations, populations became well adapted to chickpea by evolving the life‐history strategy with prolonged larval development, increased body mass, earlier reproduction, shorter lifespan and decreased plasticity of all traits compared with ancestral conditions. In chickpea‐adapted beetles, negative fitness consequences of low plasticity of pre‐adult development (revealed as severe decrease in egg‐to‐adult viability on beans) exhibited mismatch with positive effects of low plasticity (i.e. low host sensitivity) in oviposition and fecundity. In contrast, beetles adapted to the ancestral host showed high plasticity of developmental process, which enabled high larval survival on chickpea, whereas elevated plasticity in adult behaviour (i.e. high host sensitivity) resulted in delayed reproduction and decreased fecundity on chickpea. The analysis of population growth parameters revealed significant fluctuation during successive phases of the host‐shift process in A. obtectus.  相似文献   

14.
Seasonality of the epidemic and epizootic processes of tick-borne encephalitis (TBE) depend on the period of activity of ixodid ticks Ixodes persulcatus Schulze and I. ricinus Linnaeus, which are the main reservoirs and vectors of TBE virus, and also on the process of their activation. The period of activity is the period during which the ticks occur in the active state. Activation is the transition into this state of ticks that moulted from the preceding stage and completed post-moulting development. For I. persulcatus, the first adult ticks generally emerge between April 10 and May 9. Under a variety of natural conditions, activation of adult I. persulcatus after wintering lasts for 45–86 days and this period may be even longer in certain areas of the Far East. The period during which one-half of the entire tick population becomes activated (AT50) comprises no more than 10–20 days. In adult I. ricinus ticks the activation period may last even longer than in I. persulcatus. The data on duration of the period of activity and on activation of larval and nymphal stages of both tick species were considered. Ticks exhausting their nutrient reserves and failing to find a host die quickly. The period during which 50% of the entire tick population die under natural conditions is designated LT50. The main types of I. persulcatus and I. ricinus seasonal activity within their species ranges were reviewed. Data on the relationship between TBE virus reproduction in a natural focus and physiological age, pattern of activation, and seasonal changes in age structure of the tick population were analyzed. Seasonal changes in the prevalence of infection among active unfed adult ticks in a natural population are determined by virus content in individual ticks at the moment of their activation and also by the duration of subsequent virus persistence (the rate of virus loss) in ticks. Apparently, the opportunity and frequency of horizontal TBE virus transmission under natural conditions, change during the season of tick activity.  相似文献   

15.
In the vicinity of Palmer Station, Antarctica, the seabird tick, Ixodes uriae, forms large aggregations under rocks at the periphery of Adelie penguin rookeries. When the adult penguins return to the rookeries at the beginning of the nesting season the ticks leave their off-host aggregation site, attach to the penguins for a period of feeding, and then subsequently return to the aggregation site. In this study, we searched for chemical cues that may be used by the ticks to locate their aggregation sites as well as cues involved in finding penguins. Tick excreta and soil extracts from beneath tick aggregations contained a pheromone that elicited assembly behavior in unfed larvae, non-fed nymphs and non-fed adults. Guanine, the major excretory product of ticks, elicited assembly behavior, thus, guanine is likely an active component involved in assembly. Non-fed stages also responded positively to penguin guano and uric acid, the primary excretory product of penguins, suggesting that uric acid and other components of penguin guano function as a kairomone used by the non-fed ticks to locate their host. After feeding, the immature ticks’ response to both the assembly and kairomones is switched off for several days, and the ticks regain responsiveness only after they have molted. Fed adult females lay eggs and die without ever regaining responsiveness. Thus, I. uriae relies on two closely related chemicals to regulate two critical aspects of its life: assembly and host-finding. Guanine and other components of tick excreta function as an assembly pheromone in promoting the formation of off-host aggregations, while uric acid and other components of penguin guano function as a kairomone used by the tick to locate its host.  相似文献   

16.

Background

The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model.

Methodology/Principal Findings

We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related “deer tick virus,” emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission.

Conclusions/Significance

Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence.  相似文献   

17.
Lyme disease and Tick-Borne Encephalitis (TBE) are two emergent tick-borne diseases transmitted by the widely distributed European tick Ixodes ricinus. The life cycle of the vector and the number of hosts involved requires the development of complex models which consider different routes of pathogen transmission including those occurring between ticks that co-feed on the same host. Hence, we consider here a general model for tick-borne infections. We assumed ticks feed on two types of host species, one competent for viraemic transmission of infection, the second incompetent but included a third transmission route through non-viraemic transmission between ticks co-feeding on the same host. Since a blood meal lasts for several days these routes could lead to interesting nonlinearities in transmission rates, which may have important effects.We derive an explicit formula for the threshold for disease persistence in the case of viraemic transmission, also for the case of viraemic and non-viraemic transmission. From this formula, the effect of parameters on the persistence of infection can be determined. When only viraemic transmission occurs, we confirm that, while the density of the competent host has always a positive effect on infection persistence, the density of the incompetent host may have either a positive effect, by amplifying tick population, or a negative ("dilution") effect, by wasting tick bites on an incompetent host. With non-viraemic transmission, the "dilution" effect becomes less relevant. On the other hand, if the nonlinearity due to extended feeding is included, the dilution effect always occurs, but often at unrealistically high host densities. Finally, we incorporated the effects of tick aggregation on the hosts and correlation of tick stages and found that both had an important effect on infection persistence, if non-viraemic transmission occurred.  相似文献   

18.
The ticks Amblyomma hebraeum and A. variegatum are the main vectors of heartwater, a disease of ruminants caused by Cowdria ruminantium, in the agricultural areas of Zimbabwe. At present, A. hebraeum is widely distributed in the dry southern lowveld, and occurs in at least seven foci in the higher rainfall highveld. Amblyomma variegatum occurs in the Zambezi valley and surrounding dry lowveld areas in the northwest. The distribution of A. hebraeum has changed considerably over the past 70 years, while that of A. variegatum appears to have remained fairly static. The distribution patterns of both species in Zimbabwe display anomalous features; the ticks occur in areas of lowest predicted climatic suitability for survival and development and in areas where the densities of cattle, the most important domestic host, are lowest. The only factor favouring the survival of the species in the lowveld habitats in which they occur is the presence of alternative wildlife hosts for the adult stage. Their absence from more climatically favourable highveld habitats appears to have been the result of intensive acaricide treatment of cattle over a long period and a historic absence of significant numbers of wildlife hosts. Eradication of A. hebraeum and A. variegatum by intensive acaricide treatment of cattle can be achieved in the absence of significant numbers of alternative hosts, because of the long attachment and feeding periods of the adults of these tick species. However, eradication becomes impossible when alternative hosts for the adult stage are present, because a pheromone emitted by attached males attracts the unfed nymphal and adult stages to infested hosts. The unfed ticks are not attracted to uninfested hosts, such as acaricide-treated cattle.Regular acaricide treatment of cattle is expensive and so, for economic reasons, the Government of Zimbabwe is no longer enforcing a policy of strict tick control. It is likely that reduced tick control will result in the spread of Amblyomma ticks to previously uninfested areas. Added to this, recent introductions of various wildlife species to highveld commercial farming areas have created conditions in which the ticks could become established in higher rainfall areas. Amblyomma hebraeum is more likely to spread than A. variegatum, because its adults parasitize a wider range of wildlife hosts (warthogs, medium to large-sized antelope, giraffe, buffalo and rhinoceros), whereas adults of A. variegatum appear to be largely restricted to one wildlife species (buffalo) in Zimbabwe, the distribution of which is now confined to very limited areas of the country, as part of foot and mouth disease control measures. A model to predict the rate of spread of A. hebraeum through the highveld is described.Possible control options for dealing with the spread of Amblyomma ticks and heartwater to previous unaffected highveld areas, include (1) continuation of intensive acaricide treatment of cattle to prevent the spread, (2) establishment of a buffer zone of intensive tick control around affected areas to contain the spread and (3) allow the spread to occur and control heartwater by means of immunization. An economic analysis to determine the costs and benefits of the control options, which takes into account the development of Amblyomma-specific tick control technologies and improved heartwater vaccines, is recommended.Deceased.  相似文献   

19.
Host community composition and biodiversity can limit and regulate tick abundance which can have profound impacts on the incidence and severity of tick-borne diseases. Our understanding of the relationship between host community composition and tick abundance is still very limited. Here, we present a novel mathematical model of a stage-structured tick population to study the influence of host behaviour and competition in the presence of heterospecifics and the influence of host predation on tick densities. We examine the influence of specific changes in biodiversity that modify the competition among and the predation on small and large host populations. We find that increasing biodiversity will not always reduce tick populations, but depends on changes in species composition affecting the degree and type competition among hosts, and the host the predation is acting on. With indirect competition, tick densities are not regulated by increasing biodiversity; however, with direct competition, increased biodiversity will regulate tick densities. Generally, we find that biodiversity will regulate tick densities when it affects tick-host encounter rates. We also find that predation on small hosts have a limited influence on reducing tick populations, but when the predation was on large hosts this increased the magnitude of tick population oscillations. Our results have tick-management implications: while controlling large host populations (e.g. deer) and adult ticks will decrease tick densities, measures that directly control the nymph ticks could also be effective.  相似文献   

20.
In this study, engorged Amblyomma lepidum ticks were found to drop off in two peaks, one in the morning and one in the evening. Most larvae and females engorged during the morning hours between 06.00 h and 10.00 h with a peak around 08.00 h, whereas the majority of the nymphs dropped in the evening between 18.00 h and 24.00 h with the peak around 22.00 h. Although the effect of time on drop-off patterns of the ticks was statistically significant (p≤ 0.001), there were no significant seasonal influences. Survival of unfed stages of A. lepidum was also studied and was found to increase from larvae to adult ticks. The longest survival periods of 10, 11 and 14 weeks were recorded during the wet season for larvae, nymphs and adults, respectively. It is concluded that environmental conditions required for survival of A. lepidum are optimal only during the wet season and that during other seasons the tick depends primarily on prevailing micro-climatic conditions for its survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号