首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that ATP is required for the growth of the intracellular parasite, Plasmodium, outside its host cell, the erythrocyte, and that bongkrekic acid, an inhibitor of mitochondrial ATP/ADP transporter, inhibits intraerythrocytic Plasmodium maturation. We have characterized ATP/ADP transport of Plasmodium falciparum, isolated by either immune lysis or N2-cavitation. [3H]ATP uptake was due to ATP/ADP exchange since ADP efflux was dependent on exogenous ATP in an approximate 1:1 stoichiometry and both ATP influx and ADP efflux were equally inhibited by atractyloside (Ki = 100 nM). ATP uptake was not inhibited by the nucleoside transport inhibitor, nitrobenzylthioinosine. Conversely, adenosine and hypoxanthine transport were insensitive to atractyloside. ATP influx was characterized by a Km = 0.14 mM and Vmax = 1.2 nmol ATP/min/10(6) cells. Substrate specificity studies for nucleotide-induced ADP efflux indicated a preference for an adenosine ring and triphosphate, but transport did not require a hydrolyzable phosphate bond. Protein synthesis was measured with free parasites starved of glucose. Addition of 1.0 mM ATP resulted in a 40% recovery of total protein synthetic capacity in a process inhibited by 500 nM atractyloside, suggesting that uptake of erythrocyte-derived ATP by P. falciparum may be essential for maintaining maximal rates of protein synthesis during specific stages of intra-erythrocytic parasite maturation.  相似文献   

2.
The rate of D-glucose uptake by cells that had been deprived of sugar for 18-24h was consistently observed to be 15-20 times higher than that in control cells maintained for the same length of time in medium containing glucose. This increased rate of glucose transport by sugar-starved cells was due to a 3-5-fold increase in the Vmax. value of a low-affinity system (Km 1 mM) combined with an increase in the Vmax of a separate high-affinity system (Km 0.05-0.2 mM). The high-affinity system, which was most characteristic of starved cells, was particularly sensitive to low concentrations of the thiol reagent N-ethylmaleimide; 50% inhibition of uptake occurred at approx. 0.01 mM-N-ethylmaleimide. In contrast with the high-affinity system, the low-affinity system of either the fed cells or the starved cells was unaffected by N-ethylmaleimide. In addition to the increases in the rate of D-glucose transport, cells deprived of sugar had increased rates of transport of 3-O-methyl-D-glucose and 2-deoxy-D-glucose. No measurable high-affinity transport system could be demonstrated for the transport of 3-O-methylgucose, and N-ethylmaleimide did not alter the initial rate. Thus the transport of 3-O-methyglucose by both fed and starved cells was exclusively by the N-ethylmaleimide-insensitive low-affinity system. The low-affinity system also appeared to be the primary means for the transport of 2-deoxyglucose by fed and starved cells. However, some of the transport of 2-deoxyglucose by starved cells was inhibited by N-ethylmaleimide, suggesting that 2-deoxyglucose may also be transported by a high-affinity system. The results of experiments that measured transport kinetics strongly suggest that glucose can be transported by a least two separate systems, and 3-O-methylglucose and 2-deoxyglucose by one. Support for these interpretations comes from the analysis of the effects of N-ethylmaleimide and cycloheximide as well as from the results of competition experiments. The uptake of glucose is quite different from that of 2-deoxyglucose and 3-O-methylglucose. The net result of sugar starvation serves to emphasize these differences. The apparent de-repression of the transport systems studied presents an interesting basis for further studies of the regulation of transport in a variety of cells.  相似文献   

3.
3-O-[14C]Methylglucose was used to study the insulin action on the sugar transport in white fat cells. The experiments comprised determinations of the 3-O-methylglucose space at stationary distribution, of the rate constants for 3-O-methylglucose equilibrium exchange under various conditions, and of the 3-O-methylglucose inhibition of the lipogenesis from glucose. The following was found. The intracellular distribution space for 3-O-methylglucose at equilibrium was unaffected by insulin and was identical with the intracellular 3H2O space. The half-time for the equilibrium exchange of 3-O-methylglucose at a concentration of 25 mM was about 240 s in the absence of insulin and about 15 s with insulin (0.7 muM) present. Addition of phloridzin (5 mM) decreased the rate of the exchange process about 25-fold in both cases. The self-exchange of 3-O-methylglucose (1 mM) was at least 50 times faster than the self-exchange of L-glucose (1 mM). The concentration dependence of the 3-O-methylglucose exchange rate was approximately hyperbolic both in the absence and the presence of insulin, although the saturation of the transport mechanism at high concentrations of sugar was not as complete as predicted. In the absence of insulin the estimate of the half-saturation constant (Kt) was about 5 mM; that of the maximal exchange rate (Vmax) varied from 0.07 mmol s-1/liter of intracellular water to 0.2 mmol s-1 liter-1. In the presence of insulin Kt remained about 5 mM, whereas Vmax was increased to about 1.7 mmol s-1 liter-1. The latter estimate was reproducible within about 20%. The incorporation of trace amounts of [U-14C]glucose into intracellular lipids was inhibited by unlabeled 3-O-methylglucose pre-equilibrated over the membrane. The inhibition constant estimated from such experiments was about 5 mM both in the absence and the presence of insulin, and the insulin-induced increase in the rate of glucose incorporation was similar to the increase in the rate of the 3-O-methylglucose exchange process. It is concluded that exchange of 3-O-methylglucose proceeds via a mechanism which shows stereospecificity and saturability and that insulin acts by increasing the maximal transport capacity without changing the half-saturation constant.  相似文献   

4.
Glucocorticoids inhibit glucose utilization by fat cells. The possibility that this effect results from altered glucose transport was investigated using an oil-centrifugation technique which allows a rapid (within 45 s) estimation of glucose or 3-O-methylglucose uptake by isolated fat cells. At high concentration (greater than 25 muM), dexamethasone inhibited glucose uptake within 1 min of its addition to fat cells. Efflux of 3-O-methylglucose was also impaired by 0.1 mM dexamethasone. However, diminished glucose uptake was not a specific effect of glucocorticoids; high concentrations (0.1 mM) of 17beta-estradiol, progesterone, and deoxycorticosterone produced a similar response in adipocytes. At a more physiologic steroid concentration (0.1 muM), glucocorticoids inhibited glucose uptake in a time-dependent manner (maximum effect in 1 to 2 hours). This effect was specific for glucocorticoids since, under these conditions, glucose uptake was not changed by the non-glucocorticoid steroids. Lineweaver-Burk analysis showed that 0.1 muM dexamethasone treatment produced a decrease in Vmax for glucose uptake but did not change the Ku. Hexokinase activity and ATP levels were not altered by this treatment, suggesting that processes involved in glucose phosphorylation were not affected. Dexamethasone treatment also caused a reduction in uptake of 3-O-methylglucose when assayed using a low sugar concentration (0.1 mM). At a high concentration (10 mM), uptake of the methyl sugar was only slightly less than normal in treated cells. Stimulation by insulin markedly enhanced uptake of glucose and 3-O-methylglucose by both treated and untreated cells. At a low hexose concentration (0.1 mM) and in the presence of insulin, sugar uptake by dexamethasone-treated cells was slightly less than control cells. Stimulation by insulin did however completely overcome the alteration in hexose uptake when larger concentrations of sugars (greater than 5 mM) were used. There was no detectable change in total protein synthesis during incubation of fat cells with dexamethasone. However, actinomycin C blocked the inhibitory effect of dexamethasone on glucose uptake. Cycloheximide, which caused a small inhibition in glucose uptake, prevented the full expression of the inhibitory effect of dexamethasone on glucose transport. These results indicate that dexamethasone alters the facilitated transport of glucose and, secondly, suggest that synthesis of RNA and protein is needed for glucocorticoid action.  相似文献   

5.
This study examines inhibitions of human erythrocyte D-glucose uptake at ice temperature produced by maltose and cytochalasin B. Maltose inhibits sugar uptake by binding at or close to the sugar influx site. Maltose is thus a competitive inhibitor of sugar uptake. Cytochalasin B inhibits sugar transport by binding at or close to the sugar efflux site and thus acts as a noncompetitive inhibitor of sugar uptake. When maltose is present in the uptake medium, Ki(app) for cytochalasin B inhibition of sugar uptake increases in a hyperbolic manner with increasing maltose. When cytochalasin B is present in the uptake medium, Ki(app) for maltose inhibition of sugar uptake increases in a hyperbolic manner with increasing cytochalasin B. High concentrations of cytochalasin B do not reverse the competitive inhibition of D-glucose uptake by maltose. These data demonstrate that maltose and cytochalasin B binding sites coexist within the glucose transporter. These results are inconsistent with the simple, alternating conformer carrier model in which maltose and cytochalasin B binding sites correspond to sugar influx and sugar efflux sites, respectively. The data are also incompatible with a modified alternating conformer carrier model in which the cytochalasin B binding site overlaps with but does not correspond to the sugar efflux site. We show that a glucose transport mechanism in which sugar influx and sugar efflux sites exist simultaneously is consistent with these observations.  相似文献   

6.
Sulfate transport in human lung fibroblasts (IMR-90)   总被引:3,自引:0,他引:3  
Sulfate transport in a fibroblast cell line derived from human lung (IMR-90) occurred mainly via high- and low-affinity, SITS-sensitive pathways and to a lesser extent by an SITS-insensitive mechanism. In low-ionic-strength media (sucrose substituted for salts) the apparent Km of the carrier-mediated sulfate influx was 1 mM. At 0.3 mM, the sulfate concentration normally found in human serum, the contribution of the SITS-insensitive pathway was negligible. In physiological salts solution, an SITS-sensitive, high-affinity (Km 34 +/- 14 microM) sulfate influx system was observed at extracellular sulfate concentrations less than 100 microM. Between 100 and 500 microM sulfate, the range normally found in human serum, sulfate influx occurred via an SITS-sensitive, low-affinity pathway and to a small extent by an SITS-insensitive mechanism. Extracellular chloride inhibited the influx and stimulated the efflux of sulfate. Bicarbonate and thiosulfate inhibited sulfate influx but had no effect on sulfate efflux. Phosphate, arsenate, or Na+ did not affect sulfate uptake. These results indicate that in human lung fibroblast IMR-90 cells sulfate is transported mainly via an SO4(2-)/Cl- exchange system independent of the phosphate or Na+ transport. Since sulfate concentration as high as 50 mM only slightly increased sulfate efflux, SO4(2-)/SO4(2-) exchange is probably a minor component of sulfate uptake.  相似文献   

7.
Chick skeletal muscle cells in culture have an amiloride-sensitive Na+-transporting system that has the following properties. Na+ uptake is dependent on the extracellular Na+ concentration. The Km value for Na+ is 25 mM and remains constant between pH 7.5 and 8.5. The maximal rate of Na+ transport is higher at alkaline pH. An ionizable group with a pK of 7.6 is essential for the system to be functional. The activity of the amiloride-sensitive Na+ uptake system is controlled by internal Na+ and H+ concentrations. Amiloride inhibition of Na+ uptake is competitively antagonized by increasing Na+ concentration. The dissociation constant for amiloride is 5 microM in Na+-free conditions and is constant between pH 7.5 and 8.5. The Km value for Na+ found from competition experiments is 13 mM. The amiloride-sensitive Na+ influx occurs in parallel with an amiloride-sensitive H+ efflux. This H+ efflux is stimulated by increasing external Na+ concentrations, the Km for Na+ being 15 mM. It is inhibited by amiloride with the same concentration dependence as Na+ influx.  相似文献   

8.
Saccharomyces carlsbergensis cells accumulated Mn2+ (or Mg2+) ions in the presence of glucose, fructose, or mannose, but not of deoxyglucose, 3-O-methylglucose, and sorbose. Accumulation of one equivalent of Mn/2+ was coupled with the efflux of two equivalents of K+ from the cells. Mg/2+ did not exit during Mn2+ uptake. Preliminary treatment of cells with various proton conductors or glucose led to the loss of K+ and to the proportional inhibition of Mn2+ uptake. Polyene antibiotic candicidin together with glucose elicited rapid efflux of K+ and completely inhibited Mn2+ accumulation. Exogenous K+ (more than 1 mM), 100 microM N,N'-dicyclohexylcarbodiimide, and 30 mM sodium arsenate inhibited both K+ efflux and Mn2+ influx. K+ efflux from S. carlsbergensis cells affected the vacuolar pool of K+ both during the accumulation of Mn2+ or Mg2+ and during glucose uptake.  相似文献   

9.
1. The glucose transport asymmetry of intact human red cells has been shown to be retained in pink erythrocyte ghosts (a preparation of membranes in which 95% of the red cell haemoglobin has been removed). 2. 3-Isobutyl-1-methylxanthine inhibits net glucose efflux in intact cells and ghosts and also net influx in cells. 5mM theophylline inhibits net efflux in ghosts. The inhibition type is mixed. The major effect is a decrease in the V value for net flux but a small increase in Km also occurs. 3-Isobutyl-1-methylxanthine binds the transport system from the external solution only. 3. Exchange flux of glucose shows virtually no inhibition by 3-isobutyl-1-methylxanthine. 4. The results are discussed in terms of models for sugar transport. A model consistent with the observed pattern of inhibition would be one in which transport is rate-limited by the membrane and in which net and exchange flux occur via separate transport cycles.  相似文献   

10.
Cells of a glucose-PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system)-negative mutant of Vibrio parahaemolyticus transport D-glucose in the presence of Na+. Maximum stimulation of D-glucose transport was observed at 40 mM NaCl, and Na+ could be replaced partially with Li+. Addition of D-glucose to the cell suspension under anaerobic conditions elicited Na+ uptake. Thus, we conclude that glucose is transported by a Na+/glucose symport mechanism. Calculated Vmax and Km values for the Na(+)-dependent D-glucose transport were 15 nmol/min/mg of protein and 0.57 mM, respectively, when NaCl was added at 40 mM. Na+ lowered the Km value without affecting the Vmax value. D-Glucose was the best substrate for this transport system, followed by galactose, alpha-D-fucose, and methyl-alpha-glucoside, judging from the inhibition pattern of the glucose transport. D-Glucose itself partly repressed the transport system when cells were grown in its presence.  相似文献   

11.
The kinetics and activation energy of entry of pyruvate and lactate into the erythrocyte were studied at concentrations below 4 and 15mM respectively. The Km and Vmax. values for both substrates are reported, and it is shown that pyruvate inhibits competitively with respect to lactate and vice versa. In both cases the Km for the carboxylate as a substrate was the same as its Ki as an inhibitor. Alpha-Cyano-4-hydroxycinnamate and its analogues inhibited the uptake of both lactate and pyruvate competitively. Inhibition was also produced by treatment of cells with fluorodinitrobenzene but not with the thiol reagents or Pronase. At high concentrations of pyruvate or lactate (20mM), uptake of the carboxylate was accompanied by an efflux of Cl-ions. This efflux of Cl- was inhibited by alpha-cyano-4-hydroxycinnamate and picrate and could be totally abolished by very low (less than 10 muM) concentrations of the inhibitor of Cl- transport, 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid. This inhibitor titrated out the chlordie efflux induced by pyruvate, bicarbonate, formate and fluoride, in each case total inhibition becoming apparent when approximately 1.2x10(6) molecules of inhibitor were present per erythrocyte, that is, about one inhibitor molecule per molecule of the Cl- carrier. Evan when Cl- efflux was totally blocked pyruvate and lactate uptake occurred. Kinetic evidence is presented which suggests that the Cl- carrier can transport pyruvate and lactate with a high Km and high Vmax., but that an additional carrier with a low Km and a low Vmax. also exists. This carrier catalyses the exchange of small carboxylate anions with intracellular lactate, is competitively inhibited by alpha-cyano-4-hydroxycinnamate and non-competitively inhibited by picrate. The Cl- carrier shows a reverse pattern of inhibition. It is concluded that net efflux of lactic acid from the cell must occur on the Cl- carrier and involve exchange with HCO3 - followed by loss of CO2. The low Km carrier might be used in pyruvate/lactate or acetoacetate/beta-hydroxybutyrate exchanges involved in transferring reducing power across the cell membrane. The possibility that the Cl- carrier exists in cells other than the erythrocyte is discussed. It is concluded that its presence in other cell membranes together with a low intracellular Cl- concentration would explain why the pH in the cytoplasm is lower than that of the blood, and why permeable carboxylate anions do not accumulate within the cell when added from outside.  相似文献   

12.
The uptake (tissue accumulation) of three hexoses into rabbit jejunum was measured in a flux chamber in conditions of effective stirring. Glucose uptake was inhibited by galactose or 3-O-methylglucose: 1-40 mM galactose caused a progressive decline in glucose uptake; 1-5 mM 3-O-methylglucose inhibited glucose uptake but higher concentrations of 3-O-methylglucose had no further effect. When 1-40 mM 3-O-methylglucose was added to glucose plus galactose there was a further decrease in the uptake of glucose; adding 1-40 mM galactose to glucose plus 3-O-methylglucose also produced a decrease in glucose uptake. Both glucose and 3-O-methylglucose inhibited uptake of galactose but the pattern of inhibition varied between the two sugars. The uptake of 3-O-methylglucose was also inhibited by glucose and by galactose, but the uptake of 3-O-methylglucose in the presence of either galactose or glucose was no further reduced by adding the third hexose. Graphical analysis and analysis by non-linear regression both showed that neither the single Michaelis-Menten function, nor the single Michaelis-Menten-plus-competitive-inhibition function was appropriate for any of these data. The results are consistent with the hypothesis that either there are multiple (at least three) intestinal carriers for hexoses; alternatively that there is a single carrier whose transport properties for the three hexoses change differentially during cell maturation and migration up the villus.  相似文献   

13.
Transport of the nonmetabolizable glucose analogue, 3-O-methylglucose, was assessed in human polymorphonuclear leucocytes with or without the chemotactic peptide N-formylmethionylleucylphenylalanine (fMet-Leu-Phe). The peptide increased entry of labelled 3-O-methylglucose about 5-fold and the intracellular distribution space about 70%. The half-time of equilibration was 3 s in the treated cells. Similar effects were observed with zymosan-treated serum (containing the chemotactic factor C5a), with arachidonic acid, calcium ionophore A23187 and phorbol myristate acetate. However, the chemotactic protein, thrombin, had no effect, even though binding to high-affinity receptors was demonstrated. Km for zero-trans entry of 3-O-methylglucose was about 1 mM and fMet-Leu-Phe increased Vmax from 5 to about 25 amol.s-1.cell-1. Similar values were obtained from incubations for a few seconds with glucose and 2-deoxyglucose. The rate of 2-deoxyglucose uptake (8 min incubations) was limited by the transport step at substrate concentrations lower than approx. 0.1 mM, whereas the phosphorylation step became rate-limiting at higher concentrations. Thus, 2-deoxyglucose uptake can only be taken as a measure of transport at a tracer concentration. It is concluded that chemotactic factors can, but do not necessarily, increase the maximal transport velocity of hexoses entering the polymorphonuclear leucocyte via the glucose transporter.  相似文献   

14.
Two transport systems for glucose were detected: a high affinity system with a Km of 27 muM, and a low affinity system with a Km of 3.3 mM. The high affinity system transported glucose, 2-deoxy-D-glucose (Km = 26 muM), 3-O-methylglucose (Km = 19 muM), D-glucosamine (Km = 652 muM), D-fructose (Km = 2.3 mM) and L-sorbose (Km = 2.2 mM). All sugars were accumulated against concentration gradients. The high affinity system was strongly or completely inhibited by N-ethylmaleimide, quercetin, 2,4-dinitrophenol and sodium azide. The system had a distinct pH optimum (7.4) and optimum temperature (45 degrees C). The low affinity system transported glucose, 2-deoxy-D-glucose (Km = 7.5 mM), and 3-O-methylglucose (Km = 1.5 mM). Accumulation again occurred against a concentration gradient. The low affinity system was inhibited by N-ethylmaleimide, quercetin and 2,4-dinitrophenol, but not by sodium azide. The rate of uptake by the low affinity system was constant over a wide temperature range (30--50 degrees C) and was not much affected by pH; but as the pH of the medium was altered from 4.5 to 8.9 a co-ordinated increase in affinity for 2-deoxy-D-glucose (from 52.1 mM to 0.3 mM) and decrease in maximum velocity (by a factor of five) occurred. Both uptake systems were present insporelings germinated in media containing sodium acetate as sole carbon source. Only the low affinity system could initially be demonstrated in glucose-grown tissue, although the high affinity system was restored by starvation inglucose-free medium. The half-ti me for restoration of high affinity activity was 3.5 min and the process was unaffected by cycloheximide. Addition of glucose to an acetate-grown culture inactivated the high affinity system with a half-life of 5--7.5 s. Addition of cycloheximide to an acetate-grown culture caused decay of the high affinity system with a half-life of 80 min. Regulation is thus thought to depend on modulation of protein activity rather than synthesis, and the kinetics of glucose, 2-deoxy-D-glucose and 3-O-methylglucose uptake would be consistent with there being a single carrier showing negative co-operativity. Analysis of transport defective mutants revealed defects in both transport systems although the mutants used were alleles of a single gene. It is concluded that this gene (the ftr cistron) is the structural gene for an allosteric molecule which serves both transport systems.  相似文献   

15.
Based on kinetic arguments, we have recently proposed the existence of two distinct Na+/D-glucose cotransporters in brush-border membrane vesicles isolated from the human fetal jejunum (Biochim. Biophys. Acta 938 (1988) 181-188). In order to further test this hypothesis, inhibition studies of the zero-trans influx of substrate have been performed under Na(+)-gradient and voltage-clamped conditions. Initial rates of D-glucose uptake were totally abolished by D-glucose, D-galactose, alpha-methylglucose and phlorizin while 3-O-methylglucose and phloretin induced only a 65% inhibition even at the highest concentrations used. The residual activity of D-glucose uptake is thus compatible with substrate flux through a low-affinity transport system which is insensitive to phloretin and does not accept 3-O-methylglucose as substrate. This substrate specificity has been used to separate kinetically the two putative pathways for glucose transport. The data obtained are compatible with the existence of the following two systems: (i) a low-affinity, high-capacity system with a Km of 4.7 mM and a Vmax of 22 nmol/min per mg of protein, and; (ii) a high-affinity, low-capacity system with a Km of 0.57 mM and a Vmax of 10.7 nmol/min per mg of protein. These data thus demonstrate clearly the existence of two distinct Na(+)-dependent D-glucose carriers in the human jejunum during the early gestation period since these systems can be differentiated not only by their kinetic properties but also by their differences in both substrate and inhibitor specificities.  相似文献   

16.
Jaleh Daie 《Planta》1987,171(4):474-482
The uptake of different sugars was studied in segments of isolated phloem from petioles of celery (Apium graveolens L.) in order to determine the kinetics and specificity of phloem loading in this highly uniform conductive tissue. The uptake kinetics of sucrose and the sugar alcohol, mannitol, which are both phloem-translocated, indicated presence of a single saturable system, while uptake of non-phloem sugars (glucose and 3-O-methylglucose) exhibited biphasic kinetics with lower uptake rates than those for sucrose and mannitol. The presence of unlabeled mannitol, 3-O-methylglucose and maltose in the incubation solution did not cause inhibition of labeled-sucrose uptake, indicating high carrier specificity and lack of sucrose hydrolysis in vivo. The pH optimum for sucrose uptake was 5–6. Furthermore, a rapid and transient alkalinization of the external media by sucrose indicated a sugar/H+-cotransport mechanism. Dual-labeling experiments showed that sucrose influx continued at a constant rate (V max=15 mol·h-1·(g FW)-1), whereas sucrose efflux was low and insensitive to external concentration. Therefore, the saturable uptake kinetics for sucrose did not appear to be the result of an equilibrium between rates of sucrose influx and efflux.Abbreviations 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzene sulfonate - SE-CC sieve element-companion cell - VB vascular bundle  相似文献   

17.
In isolated rat adipocytes, basal as well as insulin-stimulated 3-O-methylglucose transport was inhibited nearly completely (maximal inhibition: 95%) by the nucleoside transport inhibitors dipyridamole (IC50 = 5 microM), nitrobenzylthioguanosine (20 microM), nitrobenzylthioinosine (35 microM) and papaverine (130 microM). Transport kinetics in the presence of 10 microM dipyridamole revealed a significant increase in the transport Km value of 3-O-methylglucose (3.45 +/- 0.6 vs 2.36 +/- 0.29 mM in the controls) as well as a decrease in the Vmax value (4.84 +/- 0.95 vs 9.03 +/- 1.19 pmol/s per microliter lipid in the controls). Half-maximally inhibiting concentrations of dipyridamole were one order of magnitude higher than those inhibiting nucleoside (thymidine) uptake (0.48 microM). The inhibitory effect of dipyridamole (5 microM) reached its maximum within 30 s. The agent failed to affect insulin's half-maximally stimulating concentration (0.075 nM) indicating that it did not interfere with the mechanism by which insulin stimulates glucose transport. Further, dipyridamole fully suppressed the glucose-inhibitable cytochalasin B binding (IC50 = 1.65 +/- 0.05 microM). The data indicate that nucleoside transport inhibitors reduce glucose transport by a direct interaction with the transporter or a closely related protein. It is suggested that glucose and nucleoside transporters share structural, and possibly functional, features.  相似文献   

18.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

19.
The kinetic parameters for transport of the nonmetabolizable glucose analogue 3-O-methyl-D-glucose and the relationship between transport and metabolism of D-glucose and D-fructose were determined in isolated rat hepatocytes at 37 degrees C and pH 7.4. 3-O-Methylglucose at a very low concentration (0.1 mM) equilibrated with the intracellular water with a rate constant of 0.41 s-1. Km for equilibrium exchange entry was 5.5 mM and Vmax was 2.2 mM X s-1 and similar results were obtained when using the zero-trans entry protocol. The rate constant for entry of tracer D-glucose was 0.15 s-1 and Km for glucose was about 20 mM. The phosphorylation rate for D-glucose was much slower than the transport rate. The rate constant for D-fructose entry was about 0.04 s-1, the apparent Km was about 100 mM and Vmax about 5 mM X s-1. The concentration dependence of 3-O-methylglucose inhibition of labelled fructose transport revealed biphasic kinetics indicating that fructose was transferred by both the glucose transporter and a fructose transporter. At concentrations lower than 1 mM, fructose metabolism appeared to be limited by the transport step.  相似文献   

20.
Human erythrocyte hexose transfer is mediated by the glucose transport protein GLUT1 and is characterized by a complexity that is unexplained by available hypotheses for carrier-mediated sugar transport [Cloherty, E. K., Heard, K. S., and Carruthers, A. (1996) Biochemistry 35, 10411-10421]. The study presented here examines the possibility that the operational properties of GLUT1 are determined by host cell environment. A glucose transport-null strain of Saccharomyces cerevisiae (RE700A) was transfected with the p426 GPD yeast expression vector containing DNA encoding the wild-type human glucose transport protein (GLUT1), mutant GLUT1 (GLUT1(338)(-)(A3)), or carboxy-terminal hemagglutinin-polyHis-tagged GLUT1 (GLUT1-HA-H6). GLUT1 and GLUT1-HA-H6 are expressed at the yeast cell membrane and restore 2-deoxy-d-glucose, 3-O-methylglucose, and d-glucose transport capacity to RE700A. GLUT1-HA-H6 confers GLUT1-specific sugar transport characteristics to transfected RE700A, including inhibition by cytochalasin B and high-affinity transport of the nonmetabolized sugar 3-O-methylglucose. GLUT1(338)(-)(A3), a catalytically inactive GLUT1 mutant, is expressed but fails to restore RE700A sugar uptake capacity or growth on glucose. In contrast to transport in human red cells, K(m(app)) for 2-deoxy-d-glucose uptake equals K(i(app)) for 2-deoxy-d-glucose inhibition of 3-O-methylglucose uptake. Unlike transport in human red cells or transport in human embryonic kidney cells transfected with GLUT1-HA-H6, unidirectional sugar uptake in RE700A-GLUT1-HA-H6 is not inhibited by reductant and is not stimulated by intracellular sugar. Net uptake of subsaturating 3-O-methylglucose by RE700A-GLUT1-HA-H6 is a simple, first-order process. These findings support the hypothesis that red cell sugar transport complexity is host cell-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号