首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

2.
The objective of this study was to compare the effects of administration of a single injection of progesterone (P4) and follicle aspiration on Day 7 of the estrous cycle on the timing and synchrony of follicular wave emergence, time of ovulation, and concentrations of P4, estradiol and FSH in Holstein cows. Twenty cows were assigned to 4 groups (n=5 cows per group) in a 2 by 2 factorial arrangement. Cows were treated on Day 7 (Day 0 = estrus) of the estrous cycle with either sham follicular aspiration and an oil vehicle administered intramuscularly (control), aspiration of ovarian follicles (aspiration), 200 mg of P4 im, or aspiration and 200 mg of P4 im (aspiration + P4). On Day 11, PGF(2alpha)(25mg) was administered to all groups. Synchrony of ovulation was less variable in each of the treatment groups compared with the control group (P<0.05), whereas ovulation was delayed in cows in the P4 group (P<0.05). Day of follicular wave emergence was delayed in the cows of the P4 group compared with cows in the aspiration and aspiration + P4 groups (P<0.01), whereas variability in wave emergence was less among both groups of aspirated cows compared with the cows in the control group (P<0.01). More follicles 4 to 7 mm in diameter were detected in the 2 aspiration groups compared with the cows in the control and P4 group (P<0.05). No difference was detected among groups in the maximum concentration of FSH associated with follicular wave emergence. We conclude that both the administration of P4 and the aspiration of follicles on Day 7 of the estrous cycle improves the synchrony of ovulation when luteolysis is induced on Day 11 and results in similar concentrations of FSH at the time of follicular wave emergence, but the timing of wave emergence and the number of follicles post-emergence differ.  相似文献   

3.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

4.
Nonlactating Holstein and Jersey cows (n = 24) were superovulated and ovarian follicular development was monitored by transrectal ultrasound during the period after embryo recovery. Luteolysis was induced by two injections of prostaglandin F(2)alpha (PGF; 25 mg Lutalyse; 12-h interval) at specific times after superovulatory induced estrus (Treatment 1, Day 9; Treatment 2, Day 12; Treatment 3, Day 17; Treatment 4, Day 25; superovulatory estrus = Day 0 of Cycle 1). Follicular development was monitored during Cycle 1 before and after PGF injection and continued through the ensuing estrous cycle (Cycle 2). Superovulation led to more than one embryo collected in 14 cows (mean = 8.71 embryos: positive superovulatory response [PSR] cows), while 10 cows were not successfully superovulated (mean = 0.1 embryo; negative superovulatory response [NSR] cows). These cows differed in terms of number of unovulated follicles detected at embryo collection (4.21 vs 17.2, PSR vs NSR) and plasma progesterone during the superovulatory estrous cycle (32.3 ng/ml PSR vs 8.6 ng/ml NSR). Follicular development during Cycle 1 started sooner in NSR than in PSR cows (day by class by response P<0.03) and was initiated on Days 11 to 12 in NSR cows and on Days 19 to 20 in PSR cows. Interval to estrus after PGF averaged 6.3 d. Cows having short intervals to estrus had follicles at the time of PGF injection. Treatment influenced the length of Cycle 1, but it did not affect the interval to estrus after PGF, the length of Cycle 2, or follicular development during Cycle 2. The results indicate that 1) the timing of PGF injection after embryo collection does not influence subsequent follicular populations, 2) elongated estrous cycles and intervals to estrus after PGF in superovulated cattle are a function of decreased follicular activity, and 3) the presence of numerous corpora lutea and not the superovulatory treatment, per se, seem to attenuate follicular growth.  相似文献   

5.
Two studies were conducted to determine the changes in gonadotropin secretion associated with growth and development of the largest follicle and the ability of the largest ovarian follicle present on Day 5 following estrus to ovulate if luteal regression is induced. In both studies, cows received either saline (i.m.) or prostaglandin F(2)alpha (PGF(2)alpha; 25 mg i.m.) on the fifth day post estrus. Frequency of LH pulses declined (P<0.01) with increasing day of cycle, while pulse amplitude and duration increased (P<0.05) in saline-treated cows. In PGF(2)alpha-treated cows, LH remained as high frequency-low amplitude pulses. Secretory patterns of FSH were similar between the two groups. In Experiment 2, the largest ovarian follicle present was marked around its periphery with sub-epithelial injections of charcoal. In saline-treated cows, the size of the charcoal marked follicles generally decreased, indicating atresia. A corpus luteum was present within the area of a previously marked follicle in three PGF(2)alpha-treated cows. The size of the marked follicles either decreased or increased in the remaining PGF(2)alpha-treated cows, with ovulation occurring at a different site. In summary, PGF(2)alpha-induced luteal regression on the fifth day of estrus subsequently alters the frequency, amplitude and duration of LH pulses, but not FSH pulses, and the largest follicle present on Day 5 either increases or decreases in size or ovulates when PGF(2)alpha is given on Day 5 following estrus.  相似文献   

6.
Variability in the superovulation response is an important problem for the embryo transfer industry. The objective of this study was to determine whether FSH treatment at the beginning of the cycle would improve the ovulation rate and embryo yield in dairy cows. Twenty-eight postpartum cyclic dairy cows were allocated at random to 4 treatment groups (A, B, C and D). Group A cows (n = 10) received FSH (35 mg) at a decreasing dose, starting on Day 9 (Day 0 = day of estrus) for 5 days followed by PGF(2alpha) (35 mg) on Day 12. Cows assigned to Groups B, C and D (n = 6 cows each, respectively) were given 35 mg FSH at a decreasing dose from Days 2 to 6 followed by PGF(2alpha) on Day 7. Group C and D cows received PRID inserts from Day 3 to Day 7. Cows in Group D additionally received 1000 IU hCG 60 hours after PGF(2alpha) treatment. Ovaries were scanned daily using a real time ultrasound scanner from the beginning of FSH treatment until embryo recovery, to monitor follicular development, ovulation and the number of unovulated follicles. Embryos were recovered from the uterus by a nonsurgical flushing technique 7 days after breeding. There were no differences (P>0.01) in the number of follicles > 10 mm at 48 hours after PGF(2alpha) treatment among the 4 groups. The mean numbers of follicles were 10.6 +/- 1.2, 9.3 +/- 1.3, 12.2 +/- 1.3 and 15.0 +/- 2.9 for Groups A, B, C and D, respectively. A significantly (P<0.001) higher number of ovulations was observed and a larger number of embryos was recovered in Group A than in the other groups. The results of this study indicate that superovulation with FSH at the beginning of the cycle causes sufficient follicular development but results in very low ovulation and embryo recovery rates.  相似文献   

7.
Three experiments were conducted, using multiparous crossbred beef cows, to test the ability of exogenous prostaglandin F(2alpha) (PGF) and/or naloxone to reduce the duration of the postpartum interval to estrus and to improve subsequent reproductive performance. In each experiment, postpartum cows were assigned to treatments by calving date. In Experiment 1, cows (n=44) were assigned to 1 of 4 treatment groups: 1) control, 2) PGF on Day 25 post partum, 3) 400 mg naloxone (3 doses) at 12-h intervals on Day 30 post partum, and 4) PGF on Day 25 followed by 3 400-mg doses naloxone at 12-h intervals on Day 30 post partum. In Experiment 2, cows (n=126) were assigned either to 1) control or 2) PGF on Day 30 post partum In Experiment 3, cows (n=67) were again assigned to 1 of 4 treatments 1) control, 2) PGF on Day 30 post partum, 3) PGF on Day 40 post partum, and 4) PGF on Day 30 and 40 post partum. Serum progesterone was used to determine the postpartum interval to estrus in Experiments 1 and 3. In all 3 experiments, serum progesterone was used to determine the proportion of cows that had reestablished estrous cycles at the start of breeding. Pregnancy rate and calving interval were analyzed for all trials. Naloxone had no effect (P > 0.20) on any reproductive variable measured. The postpartum interval to estrus was similar (P > 0.30) for PGF-treated and control cows in Experiments 1 and 3. The proportion of cows cycling at the start of breeding and the calving interval were not affected (P > 0.20) by PGF treatment in any of the experiments. Only the administration of PGF on Day 40 post partum in Experiment 3 improved (P=0.04) the subsequent pregnancy rate. Analysis of data pooled across experiments showed that the pregnancy rate was higher (P=0.03) for cows treated with PGF than for control cows (91.4 and 72.9%, respectively). It was concluded that administration of PGF during the early postpartum period improves subsequent reproductive function in beef cows.  相似文献   

8.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

9.
Three experiments evaluated the effects of estradiol valerate (EV) on ovarian follicular and CL dynamics, intervals to estrus and ovulation, and superovulatory response in cattle. Experiment 1 compared the efficacy of two norgestomet ear implants (Crestar and Syncro-Mate B; SMB) for 9 d (with PGF at implant removal), combined with either 5 mg estradiol-17beta and 100 mg progesterone (EP) or 5 mg EV and 3mg norgestomet (EN) im at the time of implant insertion on CL diameter and follicular wave dynamics. Ovaries were monitored by ultrasonography. There was no effect of norgestomet implant. Diameter of the CL decreased following EN treatment (P < 0.01). Mean (+/- S.D.) day of follicular wave emergence (FWE) was earlier (P < 0.0001) and less variable (P < 0.0001) in EP- (3.6 +/- 0.5 d) than in EN- (5.7 +/- 1.5 d) treated heifers. Intervals from implant removal to estrus (P < 0.001) and ovulation (P < 0.01) were shorter in EN- (45.7 +/- 11.7 and 74.3 +/- 12.6 h, respectively) than in EP- (56.4 +/- 14.1 and 83.3 +/- 17.0 h, respectively) treated heifers. Experiment 2 compared the efficacy of EP versus EN in synchronizing FWE for superovulation in SMB-implanted cows. At random stages of the estrous cycle, Holstein cows (n = 78) received two SMB implants (Day 0) and were randomly assigned to receive EN on Day 0 or EP on Day 1. Folltropin-V treatments were initiated on the evening of Day 5, with PGF in the morning and evening of Day 8, when SMB were removed. Cows were inseminated after the onset of estrus and embryos were recovered 7 d later. Non-lactating cows had more CL (16.7 +/- 11.3 versus 8.3 +/- 4.9) and total ova/embryos (14.7 +/- 9.5 versus 7.9 +/- 4.6) than lactating cows (P < 0.05). EP-treated cows tended (P = 0.09) to yield more transferable embryos (5.6 +/- 5.2) than EN-treated cows (4.0 +/- 3.7). Experiment 3 compared the effect of dose of EV on ovarian follicle and CL growth profiles and synchrony of estrus and ovulation in CIDR-treated beef cows (n = 43). At random stages of the estrous cycle (Day 0), cows received a CIDR and no further treatment (Control), or an injection of 1, 2, or 5 mg im of EV. On Day 7, CIDR were removed and cows received PGF. Follicular wave emergence occurred within 7 d in 7/10 Control cows and 31/32 EV-treated cows (P < 0.05). In responding cows, interval from treatment to FWE was longer (P < 0.05) in those treated with 5 mg EV (4.8 +/- 1.2 d) than in those treated with 1 mg (3.2 +/- 0.9 d) or 2 mg (3.4 +/- 0.8 d) EV, while Control cows were intermediate (3.8 +/- 2.0 d). Diameter of the dominant follicle was smaller (P < 0.05) at CIDR removal and tended (P = 0.08) to be smaller just prior to ovulation in the 5 mg EV group (8.5 +/- 2.2 and 13.2 +/- 0.6 mm, respectively) than in the Control (11.8 +/- 4.6 and 15.5 +/- 2.9 mm, respectively) or 1mg EV (11.7 +/- 2.5 and 15.1 +/- 2.2 mm, respectively) groups, with the 2mg EV group (10.7 +/- 1.5 and 14.3 +/- 1.7 mm, respectively) intermediate. Diameter of the dominant follicle at CIDR removal was less variable (P < 0.01) in the 2 and 5mg EV groups than in the Control group, and intermediate in the 1mg EV group. In summary, treatment with 5mg EV resulted in a longer and more variable interval to follicular wave emergence than treatment with 5mg estradiol-17beta, which affected preovulatory dominant follicle size following progestin removal, and may have also affected superstimulatory response in Holstein cows. Additionally, 5 mg EV appeared to induce luteolysis in heifers, reducing the interval to ovulation following norgestomet removal. Conversely, intervals to, and synchrony of, follicular wave emergence, estrus and ovulation following treatment with 1 or 2 mg EV suggested that reduced doses of EV may be more useful for the synchronization of follicular wave emergence in progestogen-treated cattle.  相似文献   

10.
The aim of the present study was to evaluate the effects of a single treatment with FSH on diameter of the largest follicle and on conception rates of suckled Bos indicus beef cows submitted to timed artificial insemination (TAI). Four hundred fifty-six suckled anestrous Nelore beef cows at 30-60 days postpartum were assigned to treatments. At the first day of the estrous synchronization protocol (Day 0), all cows received a progesterone-releasing intravaginal device plus 2mg of estradiol benzoate. On Day 8, cows were assigned to blocks according to the diameter of the largest follicle and then allocated to one of three treatment groups (Control, FSH, or eCG) within each block. Simultaneously to progesterone device withdrawal on Day 8, cows in the eCG treatment group (n=150) received 300 IU of eCG and cows in FSH treatment group (n=153) received 10mg of FSH, and Control cows (n=153) did not receive any additional treatment. Additional treatments with 150 μg of cloprostenol and 1mg of estradiol cypionate (EC) were also administered concurrently to progesterone device removal in all cows on Day 8. Two days later (D10), TAI and ovarian ultrasonic examinations to evaluate follicle size were performed in all cows. On Day 12, a subset of cows (n=389) were submitted a second ultrasonic exam to confirm ovulation. Final follicular growth (mm/day) was less (P=0.006) in both Control (0.95±0.11) and in FSH-treated cows (0.90±0.10) than in eCG-treated cows (1.40±0.13). Interestingly, there was a treatment-by-BCS interaction in ovulation results (P=0.03), in which, eCG treatment increased percentage of cows having ovulations with a lesser BCS. Similarly, there was a treatment-by-BCS interaction for conception (P=0.04), where the eCG treatment increased fertility in cows with a lesser BCS. In conclusion, FSH failed to stimulate final follicular growth, ovulation, and conception rate in sucked-anestrous beef cows submitted to TAI as effectively as eCG. However, physiological effects of eCG seem to be more evident in cows with a lesser BCS.  相似文献   

11.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

12.
Effect of stage of the estrous cycle at the time of prostaglandin F(2alpha) (PGF(2alpha)) injection on subsequent reproductive events in beef females was studied in four trials involving 194 animals. Cycling animals were given two injections of 25 mg PGF(2alpha) 11 days apart or, in some cases, the interval was altered to allow the second injection to fall on a specific day of the cycle. Day of estrous cycle at time of the second injection was determined by estrous detection. Interval from the second PGF(2alpha) injection to the onset of estrus (interval to estrus) was shorter (P<.01) in heifers than in cows. Both cows and heifers injected on days 5 to 9 (early cycle) had a shorter (P<.01) interval to estrus (estrus = day 0) than did those injected on days 10 to 15 (late cycle). Conception rate was lower (P<.05) for early-cycle heifers than for late-cycle heifers inseminated by appointment at 80 hours. There was no significant difference in conception rate of early-or late-cycle heifers or cows inseminated according to estrous detection or early- or late-cycle cows inseminated at 80 hours. Progesterone concentrations in blood samples collected in heifers at 4-hour intervals after the second PGF(2alpha) injection on either day 7 or day 14 declined linearly (P<.05) through 36 hours. Day of the estrous cycle at PGF(2alpha) injection had no effect on rate of progesterone decline, even though heifers injected on day 7 had a shorter (P<.05) interval to estrus. All animals whose cycle length was not affected by the second PGF(2alpha) injection were treated on days 5 through 8 of the cycle, indicating that PGF(2alpha) was less effective in regressing the corpus luteum between days 4 and 9 of the cycle than later in the cycle.  相似文献   

13.
To determine whether follicular development, superovulation and embryo production were affected by the absence or presence of a dominant follicle, cows were administered injections of FSH twice daily in the early (Days 2 to 6, estrus = Day 0) or middle stage (beginning on Day 10 or 11) of the estrous cycle. Treatment with FSH early in the cycle stimulated follicular development in 83 to 100% of all cows from 4 groups evaluated at different times after PGF2alpha treatment on Days 6 and 7. However, the proportion of cows with > 2 ovulations varied from 31 to 62.5%, indicating that induction of follicular development may occur in the absence of superovulation. When compared with cows treated in the middle of the cycle, no differences were observed in the proportion of cows with > 2 ovulations (31 vs 20%), ovulation rate. (26.0 +/- 6.3 vs 49.6 +/- 25.8), production of ova/embryos (13.3 +/- 3.2 vs 14.4 +/- 3.4), or the number of transferable embryos (8.0 +/- 3.6 vs 5.4 +/- 1.5; early vs middle, respectively). The proportion of the total number of embryos collected that were suitable for transfer was greater (P<0.01) in cows treated early in the cycle (60%) than at midcycle (37.5%). The diameter of the largest follicle observed by ultra-sound prior to initiation of FSH treatment in the early stage of the cycle (10.0 +/- 2.0 mm) was smaller (P<0.05) than at midcyle (16.8 +/- 1.3 mm). These results demonstrate that superinduction of follicular development is highly consistent after FSH treatment at Days 2 to 6 of the cycle and that superovulation and embryo production are not less variable than when FSH is administered during the middle of the cycle. However, superovulation in the early stage of the cycle may increase the proportion of embryos suitable for transfer.  相似文献   

14.
The efficacy of GnRH and PGF2alpha (7-day injection interval) for estrus synchronization is diminished by estrous expression before PGF2alpha (premature estrus; PE). Effects of modifications to GnRH-PGF2alpha protocols on the incidence of PE and other indicators of reproductive performance were evaluated. In Experiment 1, Angus-based crossbred cows (n=51) received 25 mg of PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity and interval postpartum to receive GnRH 100 microg i.m. on either Day -7 or Day -6. Estrous detection and AI were conducted from Day -3 to Day 5. Treatment had no effect on the incidence of PE, estrous response, conception rate per AI or synchronized pregnancy rate (6- vs. 7-day interval; 8 vs. 15%; 92 vs. 93%; 77 vs. 76%; 71 vs. 70%, respectively). In Experiment 2, Angus cows (n=150) received GnRH 100 microg i.m. on Day -7 and 25 mg PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity, interval postpartum, and body condition score to receive either no further treatment (Control) or 0.5 mg melengestrol acetate/hd/d from Day -7 to Day -1 (MGA). Estrous detection and AI were conducted from Day -2 to Day 7. Fewer (P < 0.05) MGA-treated cows were detected in PE (0%) compared to controls (7%). Treatment had no effect on estrous response or synchronized pregnancy rates (Control vs. MGA; 78 vs. 84%; 52 vs. 60%, respectively). Conception rate per AI of cows > or = 60 days postpartum were not affected by treatment (Control vs. MGA; 79 vs. 73%) however, control cows < 60 days postpartum tended (P < 0.10) to have lower conception rates per AI (39%) than did their MGA-treated counterparts (69%). In summary, 6- and 7-day GnRH-PGF2alpha injection intervals resulted in similar synchronized reproductive performance. Inclusion of MGA feeding between GnRH and PGF2alpha injections eliminated the occurrence of premature estrus and improved conception rate per AI of late-calving cows.  相似文献   

15.
Three experiments were conducted to: (1) compare the effect of three oestradiol formulations on gonadotrophin release in ovariectomised cows; (2) compare the effects of either oestradiol-17beta (E-17beta) or oestradiol benzoate (EB), given at two doses, on the synchrony of ovarian follicular wave emergence in CIDR-treated beef cattle; and (3) determine the timing of ovulation of the dominant follicle of a synchronised follicular wave following administration of E-17beta or EB 24h after progesterone withdrawal. In Experiment 1, ovariectomised cows (n = 16) received a once-used CIDR on Day 0 (beginning of the experiment) and were allocated randomly to receive 5mg of E-17beta, EB or oestradiol valerate (EV) plus 100mg progesterone i.m. The CIDR inserts were removed on Day 7. There were effects of time, and a treatment-by-time interaction (P < 0.0001) for plasma concentrations of both oestradiol and FSH. Plasma oestradiol concentrations peaked 12h after treatment, with highest (P < 0.01) peak concentrations in cows given E-17beta; estradiol concentrations subsequently returned to baseline by 36 h in E-17beta-treated cows and by 96 h in EB- and EV-treated cows. Plasma FSH concentrations decreased by 12h after oestradiol treatment in all groups (P < 0.0001), reached a nadir at 24h, and increased by 60 h in all groups; plasma FSH reached higher (P < 0.02) concentrations in E-17beta-treated than in EB- or EV-treated cows. In Experiment 2, non-lactating Hereford cows (n = 29) received a new CIDR on Day 0 (beginning of the experiment), and were assigned randomly to receive 1 or 5mg of E-17beta or EB i.m. on Day 1. On Day 8, CIDR were removed and PGF was given. Transrectal ultrasonography was done once daily from 2 days before CIDR insertion to 2 days after CIDR removal, and then twice-daily to ovulation. Although there was no difference among groups in the interval from oestradiol treatment to follicular wave emergence (4.2 +/- 0.3 days; P = 0.5), 5mg of E-17beta resulted in the least variable interval to wave emergence (P < 0.005), compared with the other treatment groups which were not different (P = 0.1). For the interval from CIDR removal to ovulation, there were no differences among groups for either means (P = 0.5) or variances (P = 0.1). In Experiment 3, beef heifers (n = 32) received a once-used CIDR on Day 0 (beginning of the experiment) plus 100mg progesterone i.m. and were assigned randomly to receive 5mg E-17beta or 1mg EB i.m. On Day 7, CIDR were removed and all heifers received PGF. On Day 8 (24h after CIDR removal), each group was subdivided randomly to receive 1mg of either E-17beta or EB i.m. There was no effect of oestradiol formulation on interval from treatment to follicular wave emergence (4.1 +/- 0.2 days; P = 0.7) or on the median interval (76.6h; P = 0.7) or range (72-120 h; P = 0.08) from CIDR removal to ovulation. In summary, oestradiol treatments suppressed FSH in ovariectomised cows, with the duration of suppression dependent on the oestradiol formulation. Both E-17beta and EB effectively synchronised ovarian follicular wave emergence and ovulation in CIDR-treated cattle, and the interval from CIDR removal to ovulation did not differ in heifers given either E-17beta or EB 24h after CIDR removal.  相似文献   

16.
Because cow ovaries do not contain a dominant follicle before Day 3 of the estrous cycle, we hypothesized that gonadotropin treatment early in the estrous cycle would induce growth of multiple follicles and could be used to induce superovulation. In Experiment 1, when 16 cows were treated with FSH-P beginning on Day 2 of the estrous cycle and were slaughtered on Day 5, all cows responded to gonadotropin treatment by exhibiting a large number ( approximately 19) of estrogenactive follicles >/= 6 mm. In Experiment 2, in response to FSH-P treatment from Day 2 to Day 7, and fenprostalene treatment on Day 6, 11 of 15 cows exhibited estrus and had a mean ovulation rate of 23.7 +/- 1.5. In Experiment 3, an FSH-P treatment regimen identical to that used in Experiment 2 was administered to cows beginning either on Day 2 (Day-2 cows; n=14) or Day 10 (Day-10 cows; n=11) of the estrous cycle. Twelve of 14 Day-2 cows and all Day-10 cows exhibited estrus after fenprostalene treatment. Day-2 cows exhibited 34.3 +/- 7.0 ovulations, which was less (P < 0.05) than that exhibited by Day-10 cows (48.3 +/- 4.4). However, the proportion of embryos recovered per corpus luteum was about 2-fold greater (P < 0.05) for Day-2 cows than for Day-10 cows (0.49 +/- 0.08 vs 0.27 +/- 0.06). These data indicate that beginning gonadotropin treatment early in the estrous cycle, when a dominant follicle is not present, provides an efficacious means to induce growth of multiple follicles and superovulation in cows. However, when FSH was administered for 6 d, beginning the treatment on Day 10 also resulted in a consistent and efficacious response.  相似文献   

17.
The objective of this study was to determine the reproductive performance of lactating dairy cows treated with GnRH and/or PGF2a for synchronization of estrus and ovulation. Between Days 43 and 57 post partum, a total of 374 dairy cows was divided into 4 groups. Cows in Group 1 (n = 62) were treated with 25 mg, i.m. PGF2a on Days 43 and 57; cows in Group 2 (n = 65) were not treated at this time; cows in Group 3 (n = 118) were treated with 100 ug, i.m. GnRH on Day 50, 25 mg, i.m. PGF2a on Day 57, 100 ug, i.m. GnRH on Day 59, and time-inseminated 16 h later; cows in Group 4 (n = 129) were treated with 25 mg, i.m. PGF2a once on Day 57. Cows in Groups 1 and 4 were inseminated at an induced estrus within 7 d after the last PGF2a treatment, and cows in Group 2 were inseminated at a noninduced estrus within a corresponding period of time. Conception rate, estrus detection rate and pregnancy rate were analyzed using logistic regression, and controlled for lactation number, body condition score and time of year. Days from calving to conception were analyzed using the GLM procedures of SAS, and the model included group, body condition score, lactation number, time of year, and their interactions. Cows in Group 3 had a significantly higher pregnancy rate than cows in Groups 1, 2 and 4. Orthogonal contrasts of mean days from calving to conception showed that cows in Group 3 had significantly (P < 0.01) less days from calving to conception than cows in Group 1 and Group 4. There was a significant effect of time of year on pregnancy rate and days from calving to conception, but there was no interaction between time of year and these reproductive characteristics. There was no effect of body condition score and lactation number on the reproductive characteristics evaluated. From the results of this study, it was concluded that better reproductive performance was observed in cows inseminated at a synchronized ovulation than in those inseminated at a synchronized estrous period.  相似文献   

18.
The use of hCG in cattle at breeding or at different times after breeding has been associated with extension in estrous cycle length among cows that do not become pregnant. The objective of this study was to determine whether the increase in estrous cycle length observed in hCG-treated cows that fail to become pregnant is due to changes in ovarian follicular dynamics. Twelve nonbred lactating cows were randomly assigned either to receive hCG on Day 7 of the cycle (Day 0 = day of estrus, n = 6) or to serve as controls (n = 6). Ultrasound scanning was conducted daily from Day 0 until the onset of the next ovulation to monitor follicular and corpus luteum (CL) dynamics. Blood samples were collected for progesterone analysis at each ultrasound session. Ovulation of the Day 7 follicle occurred in all 6 hCG-treated cows. The time of emergence of the second-wave of follicular growth was advanced in hCG-treated cows but was not statistically different (P > 0.05) from that of the control cows (10.8 +/- 0.3 vs 12.7 +/- 1.4 d). The mean diameter of the second-wave dominant follicle from Days 15 to 18 was not different (P > 0.05) between the treatment groups. However, the second-wave dominant follicle had a slower growth rate (0.8 vs 1.3 mm/d) among cows treated with hCG compared with that of the controls. The second-wave dominant follicle was the ovulatory follicle in 5 control cows, but only in 3 hCG-treated cows. The dominant follicle from the third wave ovulated in 1 control and in 3 hCG-treated cows. The lifespan of the spontaneous CL and the time to low progesterone levels (< 1 ng/ml) were not different between the control and hCG-treated cows. These results suggest an altered follicular dynamic but no extension in estrous cycle length when hCG is administered on Day 7 of the cycle in postpartum cows.  相似文献   

19.
The present study evaluated whether a controlled internal drug release (CIDR)-based timed AI (TAI) protocol could be used as an efficient tool for the treatment of ovarian follicular cysts in lactating dairy cows. In the first experiment, lactating dairy cows diagnosed with follicular cysts were randomly assigned to two treatments: (1) a single injection of GnRH at diagnosis (Day 0) and AI at estrus (AIE) within 21 days (GnRH group, n=70), or (2) insertion of a CIDR device containing progesterone and an injection of GnRH on Day 0, PGF(2alpha) injection at the time of CIDR removal on Day 7, GnRH injection on Day 9, and TAI 16h after the GnRH injection (CIDR-based TAI group, n=65). Conception rate after the CIDR-based TAI protocol (52.3%) was greater (P<0.05) than that after AIE following a single GnRH injection (26.9%). In the second experiment, lactating dairy cows diagnosed with follicular cysts (Cyst group, n=16) and cows having normal estrous cycles (CYC group, n=15) received the same treatment: a CIDR device containing progesterone and an injection of GnRH on Day 0, PGF(2alpha) injection at the time of CIDR removal on Day 7, and GnRH injection on Day 9. The proportion of cows with follicular wave emergence and the interval from treatment to follicular wave emergence did not differ (P>0.05) between groups. The mean diameters of dominant follicles on Days 4 and 7 as well as preovulatory follicles on Day 9, and the synchrony of ovulation following the second injection of GnRH did not differ (P>0.05) between groups. These data suggest that the CIDR-based TAI protocol results in an acceptable conception rate in dairy cows with follicular cysts.  相似文献   

20.
Ninety two Friesian cows were used to determine physical properties of cervical mucus collected during normal estrus and estrus induced. Estrus was induced using either progesterone (P4) releasing intravaginal devices (PRID) and/or prostaglandin F2alpha (PGF2alpha). The animals were assigned to 4 groups (no treatment, a PRID for 12 days plus an injection of 1000 IU PMSG at the removal of the PRID, a double injection of 3 mL PGF2alpha 11 days apart, and a PRID for 7 days plus an injection of PGF2alpha 24 h before the removal of PRID). A number of cows with normal estrus exhibited three consecutive estrus cycles after calving. Cows that had not shown estrus for three months after calving had their reproductive system palpated twice at 10-day intervals, to determine their ovarian activity. Then PRID and/or PGF2alpha was administered to cows that were found to have a palpable corpus luteum in one of two palpations (cycling cows). The cows of the three induced estrous groups were artificially inseminated (AI) twice, while those with normal estrus received only a single AI. Cervical mucus samples were collected from all cows 5 to 30 min before the first AI. Additionally, samples of cervical mucus were collected from 20 cows at their first estrus after the induced estrus. The results are summarized as follows: 1) The physical properties of cervical mucus were similar in the first three normal consecutive estrus cycles after calving. 2) The physical properties of cervical mucus in normal estrus after calving were similar to those in the first estrus after an induced estrus. 3) The pH values for normal estrus were similar to those for induced estrus. 4) Viscosity of cervical mucus in the normal estrous group was significantly lower than that in the induced estrus. Furthermore, significant differences were noticed among the three induced estrous groups. 5) Spinnbarkeit, crystallization and receptivity of cervical mucus (penetration test) were significantly higher in the normal estrous group than in the induced estrous groups, while no difference was detected among induced estrus groups. 6) Pregnancy rates in the normal estrus group were the same as in the induced estrus groups. 7) The percentages of cows in the induced estrous groups that produced cervical mucus with similar viscosity, spinnbarkeit and receptivity (penetration test) characteristics as the normal estrus group, was very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号