首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
A single intradermal injection of frozen and thawed schistosomula in conjunction with the bacterial adjuvant Mycobacterium bovis strain Bacille Calmette Guerin, Phipps substrain (BCG) induced significant levels of resistance to challenge Schistosoma mansoni infection in C57BL/6 mice. Immunization with the aqueous fraction remaining after 100,000 X G centrifugation of the larval lysate was also protective under these conditions, suggesting that some immunogenic determinants may not be membrane associated. Frozen-thawed cercariae and soluble components of adult worms also protected against challenge infection in these experiments. These observations indicate that soluble immunogens are present in both early and late developmental stages of the parasite, and therefore may be good candidate antigens for an immunochemically defined vaccine against schistosomiasis. Induction of humoral reactivity against soluble or membrane antigens was examined in mice protected against cercarial challenge by prior exposure to frozen-thawed larvae, soluble larval, or soluble adult antigens plus BCG. Animals that were immunized with frozen-thawed larvae produced low but significant levels of antibodies against larval surface antigens when examined by indirect immunofluorescence or by immunoprecipitation of surface-labeled schistosomula. Mice immunized with soluble antigens, however, showed negligible antibody reactivity against surface membrane antigens. Because mice immunized with soluble antigens were resistant to challenge infection, these results strongly suggest that anti-surface membrane reactivity is not required in the mechanism of protective immunity in this model. Sera from mice immunized with either total freeze-thaw larval lysate or soluble schistosome extracts all showed strong reactivity against soluble antigens, as detected by ELISA. Western blot analysis showed these antisera to react with a restricted number of high m.w. antigens that were present both in schistosomula and in adult worms. These antigens are therefore likely to play a major role in the development of resistance in this model as immunogens and/or as targets of protective immune response.  相似文献   

2.
Effective blood-stage malaria vaccine candidates have been mainly developed from the proteins in exposed locations on the parasite such as the surface of free merozoites or infected red blood cells. In the present study, we identified and localized novel protective antigens derived from the blood-stage of Plasmodium berghei XAT after establishment of hybridomas producing protective monoclonal antibodies (mAbs) against the parasites. The protective antigens were expressed in schizonts but not in trophozoites, and located in the parasitophorous vacuoles in the infected erythrocyte cytoplasm. The antigens, with molecular weight of 155/160 kDa, were not identical to any merozoite/schizont antigens that have been reported as target molecules recognized by mAbs developed to rodent malaria parasites. The characterization of new malarial antigenic targets of potentially protective antibody responses following infection would give us new insights for the selection of candidate antigens for malaria vaccine.  相似文献   

3.
Recent insights into humoral and cellular immune responses against malaria   总被引:1,自引:0,他引:1  
Effective immunity to malaria has been clearly demonstrated among individuals naturally exposed to malaria, and can be induced by experimental infections in animals and humans. The large number of malaria antigens has presented a major challenge to identifying protective responses and their targets, and it is likely that robust immunity is mediated by responses to multiple antigens. These include merozoite surface antigens and invasion ligands, variant antigens on the surface of parasitized red blood cells, in addition to sporozoite and liver-stage antigens. Immunity seems to require humoral and cellular immune components, probably in co-operation, although the relative importance of each remains unclear. This review summarizes recent progress towards understanding the targets and mechanisms that are important for mediating immunity to malaria.  相似文献   

4.
Substantial progress has been made in the last decade in identifying several antigens from Haemonchus contortus which, in their native form, stimulate useful levels of protective immunity (70-95% reductions in faecal egg output) in the ovine host. Much work has focussed on proteins/protein complexes expressed on the surface of the worm gut which are exposed to the blood meal, and, hence, antibody ingested with it. The antigens generally, but not in all cases, show protease activity and antibody is thought to mediate protective immunity by blocking the activity of enzymes involved in digestion within the worm. This review summarises the protective efficacy, as well as the biochemical and molecular properties, of the principal candidate antigens which are expressed in the gut of these parasites. Of course, such antigens will have to be expressed as recombinant proteins to be sufficiently cost-effective for use in a commercial vaccine and the current status of recombinant antigen expression is discussed with particular reference to conformation and glycosylation. There is a need for continued antigen definition even in the confines of gut antigens and potential targets can be selected from the rapidly expanding genome/EST datasets on the basis of predicted functional homology. Gene knockout technologies such as RNA interference have the potential to provide high throughput, rapid and inexpensive methods to define whether the protein product of a particular gene would be a suitable vaccine candidate.  相似文献   

5.
Malaria vaccine development has so far been largely focused on antigens involved in parasite invasion pathways rather than on antigens associated with severe disease and naturally acquired immunity. Individuals repeatedly exposed to Plasmodium falciparum will eventually become immune to severe disease. Parasite-derived antigens expressed on the infected red blood cell (iRBC) surface are the main targets of protective immunity and can be explored as a rational alternative in development of an anti-malaria vaccine.  相似文献   

6.
随着对抗结核免疫机制的深入研究,新型结核疫苗的研发也更加理性和成熟。近期研究表明,CD4 T细胞多功能至关重要,人类CD8和γδT细胞也有抗结核免疫保护作用,是新型疫苗设计有潜力的T细胞靶点。系统的"组学"技术大规模筛选有可能发现更多强免疫原性的抗原。不同表达时期的多抗原组成的多价疫苗对不同感染时期的结核都有预防作用。针对潜伏感染或已经感染个体配合化学药物使用的新型治疗性疫苗,有望促进清除残留的结核分枝杆菌。  相似文献   

7.
Molecular targets for detection and immunotherapy in Cryptosporidium parvum   总被引:1,自引:0,他引:1  
Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrheal illness cryptosporidiosis in humans and animals. Although C. parvum is particularly pathogenic in immunocompromised hosts, the molecular mechanisms by which C. parvum invades the host epithelial cells are not well understood. Characterization of molecular-based antigenic targets of C. parvum is required to improve the specificity of detection, viability assessments, and immunotherapy (treatment). A number of zoite surface (glyco)proteins are known to be expressed during, and believed to be involved in, invasion and infection of host epithelial cells. In the absence of protective treatments for this illness, antibodies targeted against these zoite surface (glyco)proteins offers a rational approach to therapy. Monoclonal, polyclonal and recombinant antibodies represent useful immunotherapeutic means of combating infection, especially when highly immunogenic C. parvum antigens are utilized as targets. Interruption of life cycle stages of this parasite via antibodies that target critical surface-exposed proteins can potentially decrease the severity of disease symptoms and subsequent re-infection of host tissues. In addition, development of vaccines to this parasite based on the same antigens may be a valuable means of preventing infection. This paper describes many of the zoite surface glycoproteins potentially involved in infection, as well as summarizes many of the immunotherapeutic studies completed to date. The identification and characterization of antibodies that bind to C. parvum-specific cell surface antigens of the oocyst and sporozoite will allow researchers to fully realize the potential of molecular-based immunotherapy to this parasite.  相似文献   

8.
Absorption of serum from chronically infected mice with homogenized schistosome eggs reduced antibody binding to the schistosomulum surface by 94%, indicating that almost all schistosomulum surface recognition during chronic infection is due to epitopes shared with the egg. Absorption of the serum with egg homogenate from which protein antigens had been removed by boiling and digestion with proteinase K resulted in a similar reduction of antisurface antibody demonstrating that all the shared epitopes that are recognized are carbohydrate in nature. Analysis of the time course of anticarbohydrate antibody production and the levels of antibody in mice infected with a single sex of schistosome indicated that eggs directly stimulated this response. Mouse mAb were identified that bound at very high levels to the schistosomulum surface and that recognized carbohydrate epitopes shared with the egg. Three of these had previously been demonstrated to passively transfer resistance, indicating that these surface carbohydrates are potential targets of protective immunity in the mouse. All the anticarbohydrate mAb also bound to the surface of schistosomula of other schistosome species. Thus, the strong immune response against these epitopes in chronic infection could account for the cross-specific immunity observed. Mice vaccinated with irradiated cercariae lacked high levels of anticarbohydrate antibodies and their recognition of the surface was largely due to antibody to species-specific polypeptide epitopes. With respect to the Mr greater than 200,000 and 38,000 antigens, it was demonstrated that these epitopes were present on the same antigens that bear the carbohydrate moieties recognized by antibodies from chronically infected mice. This specific polypeptide recognition is also reflected in the immunity generated by exposure to irradiated cercariae.  相似文献   

9.
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.  相似文献   

10.
Trypanosoma carassii is a kinetoplastid parasite infecting cyprinid fish with a high prevalence in nature. Antibodies have been shown to play a protective role in the immune response against this parasite in common carp, Cyprinus carpio. To identify immunogenic and putative protective T. carassii antigens we constructed a lambdaTriplEx2 expression library of the parasite and screened this with pooled carp immune serum collected 6 weeks post-infection. Screening of the library not only revealed ribosomal proteins but identified ubiquitin and a homologue of the receptor for activated C kinase (RACK) as immunogenic proteins. Equivalents of all these proteins have been identified as immunogenic in expression library screenings of other Trypanosomatida, suggesting an evolutionary conservation of their immunogenicity. The possibility that ubiquitin and/or the homologue of RACK could represent protective antigens and be targets for the design of novel therapies is discussed.  相似文献   

11.
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals'' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.  相似文献   

12.
Vaccination with irradiated third stage Brugia malayi larvae (L3) has been reported to induce partial protective immunity to L3 challenge in jirds. The purpose of this study was to identify antigens that may be targets of protective immunity in this model. Jirds were immunized by s.c. injection of irradiated L3 and challenged either s.c. or i.p. Necropsy was performed 11 wk after challenge. Partial protection was achieved in s.c. challenged animals; worm recovery was only 41% of that observed in unvaccinated controls, and worms recovered from immunized animals were stunted. Worm recoveries in immunized animals that were challenged i.p. did not differ from those of unimmunized controls. Group differences in parasite antigen levels in sera collected 2-11 wk after larval challenge were consistent with parasitological findings obtained at necropsy. Antibody studies compared prechallenge sera from immunized animals to sera from infected (unimmunized) controls. Antibody responses to L3 surface antigens (assessed by IFA) were much stronger after immunization than after infection. Immunoblot studies showed preferential recognition of several L3 antigens (97, 54, 48, and 40 kDa) by antibodies in sera from immunized animals. Additional studies are needed to determine whether immunization with such preferentially recognized antigens can induce protection to larval challenge comparable to or better than that observed with live vaccines.  相似文献   

13.
14.
HLA-A2 and -B7 antigens were introduced into EL4 (H-2b) cells by cell-liposome fusion and were used as targets or stimulators for cytotoxic T lymphocytes (CTL) generated in C57B1/6 (H-2b) mice. It was found that such EL4-HLA cells were not recognized by CTL that had been raised against either a human cell line bearing these HLA antigens or the purified HLA-A2 and -B7 antigens reconstituted into liposomes. In addition, EL4-HLA cells were not capable of inducing CTL that could recognize a human cell line bearing HLA-A2 and -B7 antigens. Instead, EL4-HLA cells induced CTL that specifically lysed EL4-HLA cells and not human cells expressing HLA-A2 and -B7. CTL recognition required the presence of HLA antigens on the EL4 cell surface and was inhibited by antibodies against either H-2b or HLA-A/B. Monoclonal antibody binding studies showed that the expected polymorphic determinants of the HLA-A2 and -B7 antigens were still present on EL4-HLA cells. However, the specificity of CTL or their precursors that are capable of recognizing HLA-A2 or -B7 was altered after these antigens became associated with the EL4 surface. Possible explanations for these results are discussed.  相似文献   

15.
Acid treatment, where cells are exposed to 0.2 M citric acid buffer at pH 3 for 2 min, was described in a previous paper to be a method which specifically eliminates class I MHC antigens from the membrane of viable cells. We applied this method to characterize functional roles of class I MHC antigens on the target cells in NK cell cytotoxicity. When NK target cells, U937, Molt-4, and Raji, were subjected to acid treatment, the treated cells lost their surface class I MHC antigens and became more sensitive to NK cell killing. On the other hand, the susceptibility of K562 cells which initially lacked class I MHC antigens did not significantly change after such treatment. We then examined the mechanism which enables NK cells to become more cytotoxic against class I MHC antigen-eliminated target cells. Single cell binding assay and cold target inhibition assay demonstrated that class I MHC antigen-eliminated target cells did not acquire high binding affinity to NK cells. However, the interaction between NK cells and class I MHC antigen-eliminated targets resulted in a greater increase in production of NKCF-like factor than did the interaction between NK cells and untreated targets. Class I MHC antigen-eliminated targets did not acquire high killer susceptibility to NKCF-like factor. The present study utilizing the acid treatment method confirmed that surface class I MHC antigens on the targets are important immunoregulatory molecules not only for cytotoxic T lymphocytes but also for NK cells and elucidated some of the underlying mechanisms.  相似文献   

16.
Pregnancy-associated malaria (PAM) is caused by Plasmodium falciparum-infected erythrocytes (IEs) that bind to chondroitin sulphate A (CSA) in the placenta by PAM-associated clonally variant surface antigens (VSA). Pregnancy-specific VSA (VSA(PAM)), which include the PfEMP1 variant VAR2CSA, are targets of IgG-mediated protective immunity to PAM. Here, we report an investigation of the specificity of naturally acquired immunity to PAM, using eight human monoclonal IgG1 antibodies that react exclusively with intact CSA-adhering IEs expressing VSA(PAM). Four reacted in Western blotting with high-molecular-weight (> 200 kDa) proteins, while seven reacted with either the DBL3-X or the DBL5-epsilon domains of VAR2CSA expressed either as Baculovirus constructs or on the surface of transfected Jurkat cells. We used a panel of recombinant antigens representing DBL3-X domains from P. falciparum field isolates to evaluate B-cell epitope diversity among parasite isolates, and identified the binding site of one monoclonal antibody using a chimeric DBL3-X construct. Our findings show that there is a high-frequency memory response to VSA(PAM), indicating that VAR2CSA is a primary target of naturally acquired PAM-specific protective immunity, and demonstrate the value of human monoclonal antibodies and conformationally intact recombinant antigens in VSA characterization.  相似文献   

17.
Most protein antigens identified as malaria vaccine candidates are polymorphic in natural parasite populations. Current opinion is that a vaccine must be based on conserved regions of antigens, and if naturally acquired immune responses to these regions are only partially protective in humans, then the vaccine must create what is lacking in Nature. An alternative view is that a successful vaccine might need to be based on multiple allelic forms of an antigen. David Conway here shows that, far from being too pessimistic or impractical, this view offers positive ways to identify targets of protective immunity.  相似文献   

18.
The simian malaria Plasmodium knowlesi provides many favourable features as an experimental model; it can be grown in vivo or in vitro. Parasites of defined variant specificity and stage of development are readily obtained and both the natural host and a highly susceptible host are available for experimental infection and vaccination trials. Proteins synthesized by erythrocytic P. knowlesi parasites are characteristic of the developmental stage, as are the alterations that the parasite induces in the red cell surface. Erythrocytic merozoites are anatomically and biochemically complex, their surface alone is covered by at least eight distinct polypeptides. Immune serum from merozoite-immunized rhesus recognizes many parasite components, especially those synthesized by schizonts. All of the merozoite surface components and some of the schizont-infected red cell surface antigens are recognized by such immune sera. Rhesus monkeys rendered immune by repeated infection may by contrast recognize comparatively few antigens; a positive correlation was established for these 'naturally' immunized monkeys between protection and antibody directed against a 74 000 molecular mass antigen. Immunization with this purified antigen confers partial protection. Other putative protective antigens have been identified by monoclonal antibodies that inhibit merozoite invasion of red cells in vitro. The antigens recognized by inhibitory monoclonal antibodies are synthesized exclusively by schizonts and are processed, at the time of schizont rupture and merozoite release, to smaller molecules that are present on the merozoite surface. The multiplicity of protective antigens is clearly demonstrated by the fact that seven distinct merozoite surface antigens are recognized by three different inhibitory monoclonals. None of the protective antigens identified are variant or strain specific.  相似文献   

19.
Some immune sera that inhibit erythrocyte invasion by merozoites also agglutinate the merozoites as they emerge from rupturing schizonts. These immune clusters of merozoites (ICM) possess a surface coat that is cross-linked by antibody and is thicker than the surface coat associated with normal merozoites (NM) obtained from cultures containing preimmune serum. Analysis of metabolically labeled ICM and NM performed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that washed ICM possessed immune complexes containing antigens representative of schizonts and merozoites. Characteristics of the immune complexes included: a) they were not soluble in pH 8 Triton X-100, b) they were soluble at an acid pH, and c) after pH neutralization they were precipitated by using staphylococcal protein A. Merozoite antigens having Mr of 83, 73, and 45 kDa were associated with immune complexes in ICM. The 83 and 73 kDa antigens were recovered in considerably larger quantities from ICM than from NM. Schizont antigens having Mr of 230, 173 (triplet), 152 (doublet), and 31 kDa were associated with immune complexes in ICM, and a 195 kDa antigen(s) from schizonts and merozoites was also present in the immune complexes. In addition, other antigens of Mr 113, 101, 65, and 51 kDa may have been immune complexed. These 15 antigens accounted for less than 30% of the schizont and merozoite antigens recognized by the immune serum. Immune complexes probably formed between antibodies and a) surface antigens of schizont-infected erythrocytes exposed to antibody before schizont rupture, b) surface antigens of merozoites and schizonts exposed during schizont rupture, and c) soluble antigens normally released during schizont rupture. The antibody components of the immune complexes may have prevented rapid degradation or shedding of some antigens from the merozoite surface. Allowing schizonts to rupture in the presence of inhibitory antibodies (to form ICM) is a useful approach to identifying exposed targets of protective immunity against malaria.  相似文献   

20.
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号