首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Site-directed spin labeling and pulsed electron–electron double resonance (PELDOR or DEER) have previously been applied successfully to study the structure and dynamics of nucleic acids. Spin labeling nucleic acids at specific sites requires the covalent attachment of spin labels, which involves rather complicated and laborious chemical synthesis. Here, we use a noncovalent label strategy that bypasses the covalent labeling chemistry and show that the binding specificity and efficiency are large enough to enable PELDOR or DEER measurements in DNA duplexes and a DNA duplex bound to the Lac repressor protein. In addition, the rigidity of the label not only allows resolution of the structure and dynamics of oligonucleotides but also the determination of label orientation and protein-induced conformational changes. The results prove that this labeling strategy in combination with PELDOR has a great potential for studying both structure and dynamics of oligonucleotides and their complexes with various ligands.  相似文献   

2.
Characterizing the movement, interactions, and chemical microenvironment of a protein inside the living cell is crucial to a detailed understanding of its function. Most strategies aimed at realizing this objective are based on genetically fusing the protein of interest to a reporter protein that monitors changes in the environment of the coupled protein. Examples include fusions with fluorescent proteins, the yeast two-hybrid system, and split ubiquitin. However, these techniques have various limitations, and considerable effort is being devoted to specific labeling of proteins in vivo with small synthetic molecules capable of probing and modulating their function. These approaches are currently based on the noncovalent binding of a small molecule to a protein, the formation of stable complexes between biarsenical compounds and peptides containing cysteines, or the use of biotin acceptor domains. Here we describe a general method for the covalent labeling of fusion proteins in vivo that complements existing methods for noncovalent labeling of proteins and that may open up new ways of studying proteins in living cells.  相似文献   

3.
The influence of structural changes of an abasic site in duplex DNA on noncovalent and site-directed spin labeling (NC-SDSL) of the spin label ç were examined with electron paramagnetic resonance (EPR) spectroscopy. The binding affinities of ç to sixteen different DNA duplexes containing all possible sequences immediately flanking the abasic site were determined and the results showed that the binding of ç is highly flanking-sequence dependent. In general, a 5′-dG nucleotide favors the binding of the spin label. In particular, 5′-d(G__T) was the best binding sequence whereas 5′-d(C__T) showed the lowest affinity. Changing the structure of the abasic site linker from a tetrahydrofuran analog (F) to the anucleosidic C3-spacer (C3) does not appreciably affect the binding of ç to the abasic site. For efficient binding of ç, the abasic site needs to be located at least four base pairs away from the duplex end. Introducing a methyl substituent at N3 of ç did not change the binding affinity, but a decreased binding was observed for both N3-ethyl and -propyl groups. These results will guide the design of abasic site receptors and spin label ligands for NC-SDSL of nucleic acids.  相似文献   

4.
The present review evaluates methods for electron microscopic immunocytochemistry and in situ hybridization, using post-embedding techniques and colloidal gold as a label. Special emphasis is given to double labeling immunocytochemistry and double in situ hybridization and to their combined application on the same specimen. Brief guidelines are presented for fixation, embedding media, the use of polyclonal and monoclonal antibodies and nucleic acid probes. Conditions for labeling and binding of antibody and nucleic acid probes to the target and protocols for direct and indirect immunodetection are discussed. Combinations of direct and indirect immunodetections in multiple labeling experiments are summarized.  相似文献   

5.
In situ investigations in living cell membranes are important to elucidate the dynamic behaviors of membrane proteins in complex biomembrane environments. Protein-specific labeling is a key technique for the detection of a target protein by fluorescence imaging. The use of post-translational labeling methods using a genetically encodable tag and synthetic probes targeting the tag offer a smaller label size, labeling with synthetic fluorophores, and precise control of the labeling ratio in multicolor labeling compared with conventional genetic fusions with fluorescent proteins. This review focuses on tag–probe labeling studies for live-cell analysis of membrane proteins based on heterodimeric peptide pairs that form coiled-coil structures. The robust and simple peptide–peptide interaction enables not only labeling of membrane proteins by noncovalent interactions, but also covalent crosslinking and acyl transfer reactions guided by coiled-coil assembly. A number of studies have demonstrated that membrane protein behaviors in live cells, such as internalization of receptors and the oligomeric states of various membrane proteins (G-protein-coupled receptors, epidermal growth factor receptors, influenza A M2 channel, and glycopholin A), can be precisely analyzed using coiled-coil labeling, indicating the potential of this labeling method in membrane protein research.  相似文献   

6.
Recent developments including pulse and multi-frequency techniques make the combination of site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy an attractive approach for the study of protein-protein or protein-oligonucleotide interaction. Analysis of the spin label side chain mobility, its solvent accessibility, the polarity of the spin label micro-environment and distances between spin label side chains allow the modeling of protein domains or protein-protein interaction sites and their conformational changes with a spatial resolution at the level of the backbone fold. Structural changes can be detected with millisecond time resolution. Inter- and intra-molecular distances are accessible in the range from approximately 0.5 to 8 nm by the combination of continuous wave and pulse EPR methods. Recent applications include the study of transmembrane substrate transport, membrane channel gating, gene regulation and signal transfer.  相似文献   

7.
Carbon nanotubes (CNTs) are promising components for electrical biosensors due to their high surface‐to‐volume ratio and improved electron transfer properties. This review surveys CNT‐based label‐free indicator‐free biosensing strategies that have been demonstrated for the sensitive detection of nucleic acids. After an introduction to CNTs, the fabrication of biosensors and techniques for the immobilization of probe nucleic acids are outlined. Subsequently, two major label‐free strategies namely electrochemical transduction and field‐effect detection are presented. The focus is on direct detection methods that avoid labels, indicators, intercalating agents, mediators, and even secondary receptors. The review concludes with a comparison between the various biosensors and presents ways of engineering them so that they can be deployed in realistic diagnostic applications.  相似文献   

8.
Frameshift mutations have been produced in specific repair-negative Salmonella tester strains by photoaffinity labeling technique using ethidium azide. Reversions requiring a +1 addition or a ?2 deletion were especially sensitive. Mutagenesis was reduced by the simultaneous addition of non-mutagenic ethidium bromide, and was prevented by photolysis of the azide prior to culture addition. Identical tester strains active in DNA excision repair were not mutagenized by the azide. These results are consistent with the interpretation that photolysis of the bound ethidium analog converts the drug from its noncovalent mode of binding (presumably intercalation) to a covalent complex with consequent production of frameshift mutations. Such photoaffinity labeling by drugs which bind to DNA not only confirms the importance of covalent drug attachment for frameshift mutagenesis, but also provides powerful techniques for studying the molecular details of a variety of genetic mechanisms.  相似文献   

9.
Among differential proteomic methods based on stable isotopic labeling, isotope‐coded protein labeling (ICPL) is a recent non‐isobaric technique devised to label primary amines found in proteins. ICPL overcomes some of the disadvantages found in other chemical‐labeling techniques, such as iTRAQ or ICAT. However, previous analyses revealed that more than 30% of the proteins identified in regular ICPL generally remain unquantified. In this study, we describe a modified version of ICPL, named Post‐digest ICPL, that makes it possible to label and thus to quantify all the peptides in a sample (bottom–up approach). Optimization and validation of this Post‐digest ICPL approach were performed using a standard protein mixture and complex protein samples. Using this strategy, the number of proteins that were identified and quantified was greatly increased in comparison with regular ICPL and cICAT approaches. The pros and cons of this improvement are discussed. This complementary approach to traditional ICPL was applied to the analysis of modification of protein abundances in the model bacterium Cupriavidus metallidurans CH34 after cultivation under simulated microgravity. In this context, two different systems – a 2‐D clinorotation and 3‐D random positioning device – were used and the results were compared and discussed.  相似文献   

10.
Integral membrane G protein-coupled receptors (GPCR) regulate multiple physiological processes by transmitting signals from extracellular milieu to intracellular proteins and are major targets of pharmaceutical drug development. Since GPCR are inherently flexible proteins, their conformational dynamics can be studied by spectroscopic techniques such as electron paramagnetic resonance (EPR) which requires selective chemical labeling of the protein. Here, we developed protocols for selective chemical labeling of the recombinant human cannabinoid receptor CB2 by judiciously replacing naturally occurring reactive cysteine residues and introducing a new single cysteine residue in selected positions. The majority of the 47 newly generated single cysteine constructs expressed well in E. coli cells, and more than half of them retained high functional activity. The reactivity of newly introduced cysteine residues was assessed by incorporating nitroxide spin label and EPR measurement. The conformational transition of the receptor between the inactive and activated form were studied by EPR of selectively labeled constructs in the presence of either a full agonist CP-55,940 or an inverse agonist SR-144,528. We observed evidence for higher mobility of labels in the center of internal loop 3 and a structural change between agonist vs. inverse agonist-bound CB2 in the extracellular tip of transmembrane helix 6. Our results demonstrate the utility of EPR for studies of conformational dynamics of CB2.  相似文献   

11.
Olson ST  Swanson R  Day D  Verhamme I  Kvassman J  Shore JD 《Biochemistry》2001,40(39):11742-11756
Michaelis complex, acylation, and conformational change steps were resolved in the reactions of the serpin, plasminogen activator inhibitor-1 (PAI-1), with tissue plasminogen activator (tPA) and trypsin by comparing the reactions of active and Ser 195-inactivated enzymes with site-specific fluorescent-labeled PAI-1 derivatives that report these events. Anhydrotrypsin or S195A tPA-induced fluorescence changes in P1'-Cys and P9-Cys PAI-1 variants labeled with the fluorophore, NBD, indicative of a substrate-like interaction of the serpin reactive loop with the proteinase active-site, with the P1' label but not the P9 label perturbing the interactions by 10-60-fold. Rapid kinetic analyses of the labeled PAI-1-inactive enzyme interactions were consistent with a single-step reversible binding process involving no conformational change. Blocking of PAI-1 reactive loop-beta-sheet A interactions through mutation of the P14 Thr --> Arg or annealing a reactive center loop peptide into sheet A did not weaken the binding of the inactive enzymes, suggesting that loop-sheet interactions were unlikely to be induced by the binding. Only active trypsin and tPA induced the characteristic fluorescence changes in the labeled PAI-1 variants previously shown to report acylation and reactive loop-sheet A interactions during the PAI-1-proteinase reaction. Rapid kinetic analyses showed saturation of the reaction rate constant and, in the case of the P1'-labeled PAI-1 reaction, biphasic changes in fluorescence indicative of an intermediate resembling the noncovalent complex on the path to the covalent complex. Indistinguishable K(M) and k(lim) values of approximately 20 microM and 80-90 s(-1) for reaction of the two labeled PAI-1s with trypsin suggested that a diffusion-limited association of PAI-1 and trypsin and rate-limiting acylation step, insensitive to the effects of labeling, controlled covalent complex formation. By contrast, differing values of K(M) of 1.7 and 0.1 microM and of k(lim) of 17 and 2.6 s(-1) for tPA reactions with P1' and P9-labeled PAI-1s, respectively, suggested that tPA-PAI-1 exosite interactions, sensitive to the effects of labeling, promoted a rapid association of PAI-1 and tPA and reversible formation of an acyl-enzyme complex but impeded a rate-limiting burial of the reactive loop leading to trapping of the acyl-enzyme complex. Together, the results suggest a kinetic pathway for formation of the covalent complex between PAI-1 and proteinases involving the initial formation of a Michaelis-type noncovalent complex without significant conformational change, followed by reversible acylation and irreversible reactive loop conformational change steps that trap the proteinase in a covalent complex.  相似文献   

12.
P‐selectin glycoprotein ligand‐1 (PSGL‐1) is a homodimeric mucin ligand that is important to mediate the earliest adhesive event during an inflammatory response by rapidly forming and dissociating the selectin‐ligand adhesive bonds. Recent research indicates that the noncovalent associations between the PSGL‐1 transmembrane domains (TMDs) can substitute for the C320‐dependent covalent bond to mediate the dimerization of PSGL‐1. In this article, we combined TOXCAT assays and molecular dynamics (MD) simulations to probe the mechanism of PSGL‐1 dimerization. The results of TOXCAT assays and Martini coarse‐grained molecular dynamics (CG MD) simulations demonstrated that PSGL‐1 TMDs strongly dimerized in a natural membrane and a leucine zipper motif was responsible for the noncovalent dimerization of PSGL‐1 TMD since mutations of the residues that occupied a or d positions in an (abcdefg)n leucine heptad repeat motif significantly reduced the dimer activity. Furthermore, we studied the effects of the disulfide bond on the PSGL‐1 dimer using MD simulations. The disulfide bond was critical to form the leucine zipper structure, by which the disulfide bond further improved the stability of the PSGL‐1 dimer. These findings provide insights to understand the transmembrane association of PSGL‐1 that is an important structural basis for PSGL‐1 preferentially binding to P‐selectin to achieve its biochemical and biophysical functions.  相似文献   

13.
Photoaffinity labeling of T4 bacteriophage 32 protein   总被引:1,自引:0,他引:1  
With a view toward the determination of nucleic acid binding domains and sites on nucleic acid helix-destabilizing (single strand-specific) proteins (HDPs), we have studied the interactions of the copolymer polynucleotide photoaffinity label, poly(adenylic, 8-azidoadenylic acid), (poly(A,8-N3A] with the T4 bacteriophage HDP, 32 protein. Poly(A,8-N3A) quenched the intrinsic tryptophan fluorescence of 32 protein in a manner similar to that observed with other polynucleotides, and the effect could be reversed by addition of sufficient NaCl. The binding affinity and site size of this noncovalent interaction of poly(A,8-N3A) with 32 protein are similar to the values obtained for poly(A) and this protein. When [3H]poly(A,8-N3A)/32 protein mixtures were irradiated at 254 nm, fluorescence quenching was not reversed by NaCl, suggesting that the label was covalently bound to the protein. Mixtures of photolabel and protein subjected to short periods of irradiation (generally 1 min, 2000 erg mm-2) formed high molecular weight complexes, which when electrophoresed on sodium dodecyl sulfate (SDS)-polyacrylamide gels were radioactive and stained with Coomassie Blue R. Under the same conditions, [3H]poly(A) failed to label 32 protein. The radioactivity of [3H]poly(A,8-N3A)-labeled complexes subjected to micrococcal nuclease after irradiation was seen to migrate just behind the free 32 protein monomer on SDS-polyacrylamide gels, indicating that portions of the photolabel not in direct contact with protein were accessible to this enzyme. By several criteria, we conclude that 32 protein was photolabeled specifically at its single-stranded nucleic acid binding site. Single-stranded nucleic acids with affinities for protein greater than that of poly(A,8-N3A) effectively inhibited photolabeling. The [NaCl] dependence of photolabeling monitored on SDS gels paralleled the NaCl reversal of (noncovalent) poly(A,8-N3A)-32 protein binding. Photolabeling reached a plateau after 1-2 min. The formation of high molecular weight complexes with increasing [poly(A,8-N3A)] paralleled the disappearance of free protein on SDS gels, and reached a saturation level of about 75% labeling. Several chromatographic procedures appear to be useful for the separation of the photolabeled complexes from free protein and photolabel. Limited trypsin hydrolysis of photolabeled 32 protein indicated that all the label was within the central ("III") portion of the protein. This approach should have general applicability to the identification of nucleic acid binding sites on helix-destabilizing proteins.  相似文献   

14.
A cysteine-specific methanethiosulfonate spin label was introduced into yeast iso-1-cytochrome c at three different positions. The modified forms of cytochrome c included: the wild-type protein labeled at naturally occurring C102, and two mutated proteins, S47C and L85C, labeled at positions 47 and 85, respectively (both S47C and L85C derived from the protein in which C102 had been replaced by threonine). All three spin-labeled protein derivatives were characterized using electron paramagnetic resonance (EPR) techniques. The continuous wave (CW) EPR spectrum of spin label attached to L85C differed from those recorded for spin label attached to C102 or S47C, indicating that spin label at position 85 was more immobilized and exhibited more complex tumbling than spin label at two other positions. The temperature dependence of the CW EPR spectra and CW EPR power saturation revealed further differences of spin-labeled L85C. The results were discussed in terms of application of the site-directed spin labeling technique in probing the local dynamic structure of iso-1-cytochrome c.  相似文献   

15.
In site-directed spin labeling (SDSL), a nitroxide moiety containing a stable, unpaired electron is covalently attached to a specific site within a macromolecule, and structural and dynamic information at the labeling site is obtained via electron paramagnetic resonance (EPR) spectroscopy. Successful SDSL requires efficient site-specific incorporation of nitroxides. Work reported here presents a new method for facile nitroxide labeling at the 5′ terminus of nucleic acids of arbitrary sizes. T4-polynucleotide kinase was used to enzymatically substitute a phosphorothioate group at the 5′ terminus of a nucleic acid, and the resulting phosphorothioate was then reacted with an iodomethyl derivative of a nitroxide. The method was successfully demonstrated on both chemically synthesized and naturally occurring nucleic acids. The attached nitroxides reported duplex formation as well as tertiary folding of nucleic acids, indicating that they serve as a valid probe in nucleic acid studies.  相似文献   

16.
Sequence-specific spin-labeled oligodeoxynucleotides with conformation-sensitive electron paramagnetic resonance (EPR) signals are synthesized and examined as solution-phase nucleic acid hybridization probes. Either a proxyl or tempo ring linked to the C(5) position of deoxyuridine (dU) by a nonrigid two-atom methylamino tether is incorporated within 15-mers by phosphotriester chemistry yielding stable spin-labeled probes with distinctive EPR specific activity (AEPR) values. The AEPR is greater for a proxyl-labeled than for a tempo-labeled probe and is consistent with EPR data of enzymatically labeled 26-mers [Bobst, A. M., Pauly, G. T., Keyes, R. S., and Bobst, E. V. (1988) FEBS Lett. 228, 33-36], after normalizing for percent labeling. The spectral characteristics of the free probes and the probe/target complexes are similar to those of enzymatically spin-labeled nucleic acids containing a different nonrigid two-atom-tethered spin label [Bobst, A. M., Kao, S.-C., Toppin, R. C., Ireland, J. C., and Thomas, I. E. (1984) J. Mol. Biol. 173, 63-70]. The presence of target DNA is detected in solution by EPR spectroscopy and the assay is based on the characteristic line-shape change associated with hybridization. The EPR spectra of free and bound probe reflect little interference from changes in global dynamics of the probe, and the line-shape change upon complexation results primarily from a change in local base dynamics. The presence or absence of hybridization can be detected in a loop-gap resonator with about 1 pmol of spin-labeled 15-mer within minutes.  相似文献   

17.
The technique of photoaffinity labeling is applied to the actinomycin D system to provide a novel probe for the examination of the interactions of actinomycin D with nucleic acids. The capacity for covalent attachment of actinomycin D will aid greatly in the study of target-site specificities and the correlations of biological effects with biophysical DNA interactions. Through chemical modification of the parent actinomycin D molecule with a photoreactive azido substituent, a functional analog of the parent actinomycin D is generated having equilibrium binding properties identical to those of the parent molecule yet with the capacity to form a covalent attachment to DNA upon photolysis. The results presented here describe the noncovalent interactions of this photoreactive probe to DNA (absence of light) and compares the binding properties observed to those of the parent actinomycin D and 7-aminoactinomycin D analog. These studies demonstrate that the DNA binding properties (i.e. binding affinity, binding site size, and sequence specificity) retained by the 7-azidoactinomycin D, thus providing a suitable probe for examining actinomycin D-DNA interactions.  相似文献   

18.
Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time‐consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state‐of‐the‐art prediction methods. First, most of the existing techniques are designed to deal with multi‐class rather than multi‐label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi‐label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi‐label classifier called HPSLPred, which can be applied for multi‐label classification with an imbalanced protein source. For convenience, a user‐friendly webserver has been established at http://server.malab.cn/HPSLPred.  相似文献   

19.
Super‐resolution microscopy techniques can provide answers to still pending questions on prokaryotic organisms but are yet to be used at their full potential for this purpose. To address this, we evaluate the ability of the rhodamine‐like KK114 dye to label various types of bacteria, to enable imaging of fine structural details with stimulated emission depletion microscopy (STED). We assessed fluorescent labeling with KK114 for eleven Gram‐positive and Gram‐negative bacterial species and observed that this contrast agent binds to their cell membranes. Significant differences in the labeling outputs were noticed across the tested bacterial species, but importantly, KK114‐staining allowed the observation of subtle nanometric cell details in some cases. For example, a helix pattern resembling a cytoskeleton arrangement was detected in Bacillus subtilis. Furthermore, we found that KK114 easily penetrates the membrane of bacterial microorganism that lost their viability, which can be useful to discriminate between living and dead cells.  相似文献   

20.
M H Kim  N E Geacintov  M Pope  R G Harvey 《Biochemistry》1984,23(23):5433-5439
Reaction of 1-oxiranylpyrene (1-OP) with DNA and the structures of the covalent and noncovalent complexes formed were studied in aqueous media (5 mM phosphate buffer with 0.1 M NaCl, pH 7) by utilizing the techniques of absorption, fluorescence and linear dichroism spectroscopy in order to gain an understanding of possible structure-activity relationships for polycyclic aromatic hydrocarbon epoxides in tumorigenesis and carcinogenesis, and the results were compared with those obtained for the highly active benzo[a]pyrene diol epoxide (BaPDE). Like BaPDE, 1-OP undergoes acid-catalyzed hydrolysis with the pseudo-first-order rate constant k = 4.6 X 10(-4) s-1 in the absence of DNA, which is about 10 times slower than in the case of BaPDE. In DNA solutions, this hydrolysis is catalyzed by a rapid formation of a physically bound complex of 1-OP-DNA, which subsequently undergoes either (1) hydrolysis to a diol derivative or (2) formation of a covalent adduct of 1-OP-DNA. The same value of the noncovalent binding constant (K = 4000 M-1 is obtained for both 1-OP and for BaPDE, which suggests that the pi-electron interaction between the pyrenyl moiety and the nucleic acid bases is the dominant factor in the formation of the physical complexes and that the two extra OH groups in BaPDE do not play a significant role in determining the value of the physical binding constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号