首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Auditory feedback is necessary for adult song maintenance in both oscines and psittacines. Although belonging to phylogenically separated orders, deafened adult oscine Bengalese finches and psittacine budgerigars exhibit similarities in certain aspects of song changes. An interesting question is whether these birds share common mechanisms for song maintenance. Therefore, it is important to compare the effects of deafening on adult song patterns among and within orders. Although zebra and Bengalese finches are closely related oscine species, few studies have performed direct, long-term, quantitative comparisons of their songs after deafening because suitable song characteristics have not been identified. Based on our previous findings for Bengalese finch songs, we analyzed zebra finch songs over 9 months after deafening, focusing on changes in the number of syllables categorized according to fundamental frequencies. Deafened zebra finches demonstrated a gradual but significant decrease in high-frequency syllables and a tendency to increase low-frequency syllables, similar to deafened Bengalese finches. Although this change took longer in zebra finches, the altered proportion of syllables eventually stabilized. Results indicated that adult songs show similar aspects after auditory deprivation, and that neural mechanisms involved in the maintenance of high-frequency song syllables, using auditory feedback, may be present in both finches despite species differences.  相似文献   

2.
Female songbirds use male songs as an important criterion for mate selection. Properties of male songs are thought to indicate the male's quality as a potential mate. Song preferences in female zebra finches are known to be influenced by two factors--early auditory experience and the acoustic characteristics of males' songs. Studies often investigate song preferences by priming females with estrogen. However, estrogenic influences on song preferences have not been studied. We investigated the relative influence of early auditory experience, acoustic features of songs, and estrogen availability on song responsiveness in female zebra finches. Juvenile female zebra finches were tutored for 10 days with 40 songs per day with one of three acoustically different song types--simple songs, long-bout songs or complex songs. A fourth group of females was untutored. Aside from this brief song exposure, females were raised and maintained without exposure to male songs. During adulthood, females' behavioral responses to the three song types were tested under three hormone conditions--untreated, estradiol-treated and 1,4,6-androstatriene-3,17-dione (ATD)-treated (to lower endogenous estrogen). Based on the results of our study, four conclusions can be drawn. First, song responsiveness in female zebra finches is strongly affected by minimal early acoustic experience. Second, inexperienced female zebra finches are inherently biased to respond more to complex songs over other song types Third, although female zebra finches are inherently biased to respond more to complex songs, early acoustic experience may either reinforce or weaken this inherent responsiveness to complex songs. Fourth, estrogen selectively accentuates song responsiveness in acoustically-experienced female zebra finches.  相似文献   

3.
Numerous animal displays begin with introductory gestures. For example, lizards start their head-bobbing displays with introductory push-ups, and many songbirds begin their vocal displays by repeating introductory notes (INs) before producing their learned song. Among songbirds, the acoustic structure and the number of INs produced before song vary considerably between individuals in a species. While similar variation in songs between individuals is a result of learning, whether variations in INs are also due to learning remains poorly understood. Here, using natural and experimental tutoring with male zebra finches, we show that mean IN number and IN acoustic structure are learned from a tutor. Interestingly, IN properties and how well INs were learned, were not correlated with the accuracy of song imitation and only weakly correlated with some features of songs that followed. Finally, birds artificially tutored with songs lacking INs still repeated vocalizations that resembled INs, before their songs, suggesting biological predispositions in IN production. These results demonstrate that INs, just like song elements, are shaped both by learning and biological predispositions. More generally, our results suggest mechanisms for generating variation in introductory gestures between individuals while still maintaining the species-specific structure of complex displays like birdsong.  相似文献   

4.
Song learning in oscine birds is often defined solely as a process of song imitation; nonetheless, not all songs produced by laboratory‐tutored birds are imitations of the model songs. If song learning were strictly a process of imitation, these non‐imitated songs (inventions) would be expected to contain no learned attributes. To determine whether species‐typical song attributes can be learned in the absence of imitation, we compared the imitations and inventions of laboratory‐tutored nightingales (Luscinia megarhynchos B.) with the songs of wild nightingales and the songs of laboratory‐reared, untutored nightingales. The species‐typical song attribute measured was stereotypy. We quantified stereotypy by four variables: (1) percentage of notes shared between two renditions of the same song type (2) difference in repetition rates of the same trill in two renditions of the same song type (3) acoustic similarity of the same note in two renditions of the same song type, and (4) acoustic similarity of the same note repeated within a trill. Wild songs and imitated songs were significantly more stereotypical than the songs of untutored birds for all measures. For the percentage of notes shared (1), and the acoustic similarity of notes in two renditions of the same song type (3), invented songs did not differ from the songs of untutored birds, suggesting that imitation is necessary for the acquisition of these song characteristics. However, invented songs were significantly more stereotypical than the songs of untutored birds for measures of stereotypy related to trills (2 and 4), and neither imitated nor invented songs differed significantly from the songs of wild birds in terms of trill rate stereotypy (2). Thus, it appears that the process of learning to produce trills may differ from the process of learning non‐repetitive song components: increased stereotypy in trills occurs even when the trills themselves are not copied from song models. Strict imitation does not fully account for the acquisition of some learned song attributes.  相似文献   

5.
Male zebra finches normally crystallize song at approximately 90 days and do not show vocal plasticity as adults. However, changes to adult song do occur after unilateral tracheosyringeal (ts) nerve injury, which denervates one side of the vocal organ. We examined the effect of placing bilateral lesions in LMAN (a nucleus required for song development but not for song maintenance in adults) upon the song plasticity that is induced by ts nerve injury in adults. The songs of birds that received bilateral lesions within LMAN followed by right ts nerve injury silenced, on average, 0.25 syllables, and added 0.125 syllables (for an average turnover of 0.375 syllables), and changed neither the frequency with which individual syllables occurred within songs nor the motif types they used most often. In contrast, the songs of birds that received sham lesions followed by ts nerve injury lost, on average, 1.625 syllables, silenced 0.125 syllables, and added 0.75 syllables, turning over an average of 2.5 syllables. They also significantly changed both the frequency with which individual syllables were included in songs and the motif variants used. Thus, song plasticity induced in adult zebra finches with crystallized songs requires the presence of LMAN, a nucleus which had been thought to play a role in vocal production only during song learning. Although the changes to adult songs induced by nerve transection are more limited than those that arise during song development, the same circuitry appears to underlie both types of plasticity.  相似文献   

6.
In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross‐tutored by Bengalese finches were studied. Single‐unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information (MI), response reliability, mean spike rate, fluctuations in time‐varying spike rate, distributions of time‐varying spike rates, and neural discrimination of individual songs. MI quantifies a response's capacity to encode information about a stimulus. In midbrain and forebrain neurons, MI was significantly higher in normal zebra finch neurons than in Bengalese finch and cross‐tutored zebra finch neurons, but not between Bengalese finch and cross‐tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. MI did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and MI were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 235–252, 2010.  相似文献   

7.
Vocal acquisition in songbirds and humans shows many similarities, one of which is that both involve a combination of experience and perceptual predispositions. Among languages some speech sounds are shared, while others are not. This could reflect a predisposition in young infants for learning some speech sounds over others, which combines with exposure-based learning. Similarly, in songbirds, some sounds are common across populations, while others are more specific to populations or individuals. We examine whether this is also due to perceptual preferences for certain within-species element types in naive juvenile male birds, and how such preferences interact with exposure to guide subsequent song learning. We show that young zebra finches lacking previous song exposure perceptually prefer songs with more common zebra finch song element types over songs with less common elements. Next, we demonstrate that after subsequent tutoring, birds prefer tutor songs regardless of whether these contain more common or less common elements. In adulthood, birds tutored with more common elements showed a higher song similarity to their tutor song, indicating that the early bias influenced song learning. Our findings help to understand the maintenance of similarities and the presence of differences among birds'' songs, their dialects and human languages.  相似文献   

8.
Accurate song perception is likely to be as important for female songbirds as it is for male songbirds. Male zebra finches (Taeniopygia guttata) show differential ZENK expression to conspecific and heterospecific songs by day 30 posthatch in auditory perceptual brain regions such as the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). The current study examined ZENK expression in response to songs of different qualities at day 45 posthatch in both sexes. Normally reared juvenile zebra finches showed higher densities of immunopositive nuclei in both the dorsal and ventral areas of NCM and CMM (formerly cmHV), but not HA, a visual area, in response to normal song over untutored song or silence. Male and female patterns of ZENK expression did not differ. We next compared responses of birds reared without exposure to normal song (untutored) to those of normally reared birds. Untutored birds did not show higher responses to normal song than to untutored song in the three song perception areas. Furthermore, untutored birds of both sexes showed lower densities of immunopositive nuclei in all four areas than did normally reared birds. In addition, ZENK expression was greater in untutored females than in males in the dorsal portion of NCM and in CMM. Our findings suggest that at least some neural mechanisms of song perception are in place in socially reared female and male finches at an early age. Furthermore, early exposure to song tutors affects responses to song stimuli.  相似文献   

9.
Similar to language acquisition by human infants, juvenile male zebra finches (Taeniopygia guttata) imitate an adult (tutor) song by transitioning from repetitive production of one or two undifferentiated protosyllables to the sequential production of a larger and spectrally heterogeneous set of syllables. The primary motor region that controls learned song is driven by a confluence of input from two premotor pathways: a posterior pathway that encodes the adult song syllables and an anterior pathway that includes a basal ganglia (BG)‐thalamo‐cortical circuit. Similar to mammalian motor‐learning systems, the songbird BG circuit is thought to be necessary for shaping juvenile vocal behaviour (undifferentiated protosyllables) toward specific targets (the tutor's song syllables). Here, we tested the hypothesis that anterior pathway activity contributes to the process of protosyllable differentiation. Bilateral ablation of lateral magnocellular nucleus of the anterior nidopallium (LMAN) was used to disconnect BG circuitry at ages before protosyllable production and differentiation. Comparison to surgical controls revealed that protosyllables fail to differentiate in birds that received juvenile LMAN ablation—the adult songs of birds with >80% bilateral LMAN ablation consisted of only one or two syllables produced with the repetitive form and spectral structure that characterizes undifferentiated protosyllables in normal juveniles. Our findings support a role for BG circuitry in shaping juvenile vocal behaviour toward the acoustic structure of the tutor song and suggest that posterior pathway function remains in an immature “default” state when developmental interaction with the anterior pathway is reduced or eliminated. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 574–590, 2014  相似文献   

10.
How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD) responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables.  相似文献   

11.
Sound generation based on a pulmonary mechanism typically occurs during the expiratory phase of respiration. Phonation during inspiration has been postulated for the calls of some amphibians and for exceptional sounds in some human languages. No direct evidence exists for phonation during inspiration in birds, but such a mechanism has been proposed to explain very long uninterrupted songs. Here, we report the first physiological evidence for inspiratory sound production in the song of the zebra finch (Taeniopygia guttata). Motor gestures of the vocal and respiratory muscles leading to the production of inspiratory phonation differ from those of silent inspirations during song as well as from those leading to phonation during expiration. Inspiratory syllables have a high fundamental frequency, which makes them acoustically distinct from all other zebra finch song syllables. Furthermore, young zebra finches copy these inspiratory syllables from their tutor song, producing them during inspiration. This suggests that physical limitations confine the production of these sounds to the inspiratory phase in zebra finches. These findings directly demonstrate how novel respiratory-vocal coordination can enhance the acoustic structure of birdsong, and thus provide insight into the evolution of song complexity.  相似文献   

12.
In zebra finches early auditory experience is critical for normal song development. Young males first listen to and memorize a suitable song model and then use auditory feedback from their own vocalizations to mimic that model. During these two phases of vocal learning, song-related brain regions exhibit large, hormone-induced changes in volume and neuron number. Overlap between these neural changes and auditory-based vocal learning suggests that processing and acquiring auditory input may influence cellular processes that determine neuron number in the song system. We addressed this hypothesis by measuring neuron density, nuclear volume, and neuron number within the song system of normal male zebra finches and males deafened prior to song learning (10 days of age). Measures were obtained at 25, 50, 65, and 120 days of age, and included four song nuclei: the hyperstriatum ventralis pars caudalis or higher vocal center (HVc), Area X, the robust nucleus of the archistriatum (RA), and the lateral magnocellular nucleus of the anterior neostriatum (IMAN). In both HVc and Area X, nuclear volume and neuron number increased markedly with age in both normal and deafened birds. The volume of RA also increased with age and was not affected by early deafening. In IMAN, deafening also did not affect the overall age-related loss of neurons, although at 25 days neuron number was slightly less in deafened than in normal birds. We conclude that while the addition and loss of neurons in the developing song system may provide plasticity essential for song learning, these changes do not reflect learning.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The acoustic profile of the zebra finch song is characterized by a series of identical repeating units, each comprising a distinctive sequence of acoustic elements, called syllables. Here, we perform an analysis of song pattern deviations caused by variabilities in the production of song syllables. Zebra finches produce four different kinds of syllable variabilities-syllable deletions, single or double syllable insertions, syllable alterations, and syllable repetitions. All these variabilities, with the exception of repetitions, are present in songs of more than two-thirds of the normal adult birds; repetitions are present in less than one-fifth of birds. The frequency of occurrence of these variabilities is independent of the amount of singing, suggesting that they are unlikely to result simply from singing-induced physiological changes such as fatigue. Their frequencies in tutor-deprived birds are not significantly different from those in normal birds, indicating that they are unlikely to be acquired due to deficiencies in tutor-dependent learning. The types, patterns of occurrence and relative frequencies of these song syllable variabilities might reveal insights into the functioning of the song motor control pathway.  相似文献   

14.
Juvenile male zebra finches develop their song by imitation. Females do not sing but are attracted to males' songs. With functional magnetic resonance imaging and event‐related potentials we tested how early auditory experience shapes responses in the auditory forebrain of the adult bird. Adult male birds kept in isolation over the sensitive period for song learning showed no consistency in auditory responses to conspecific songs, calls, and syllables. Thirty seconds of song playback each day over development, which is sufficient to induce song imitation, was also sufficient to shape stimulus‐specific responses. Strikingly, adult females kept in isolation over development showed responses similar to those of males that were exposed to songs. We suggest that early auditory experience with songs may be required to tune perception toward conspecific songs in males, whereas in females song selectivity develops even without prior exposure to song. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

15.
Songbirds first memorize a tutor song in youth and develop their own song after the remembered model. As birds sexually mature, their song becomes crystallized and refractory to further tutoring. Here, we show that the song syllables of adult zebra finches gradually drift from their once crystallized forms, when individual birds are kept in auditory isolation or in company of cage mates singing different song syllables. Furthermore, when birds with drifted syllables are tutored with the same model again, they amend the fine structure of their syllables towards the model. In contrast, retutoring does not affect syllable sequences that differ from those of the original tutor.  相似文献   

16.
Song is a notable sexual signal of birds, and serves as an honest indicator of male quality. Condition dependence of birdsong has been well examined from the viewpoint of the developmental stress hypothesis, which posits that complex songs assure fitness because learned acoustic features of songs are especially susceptible to early‐life stress that young birds experience in song learning periods. The effect of early stress on song phenotypes should be crucial, especially in age‐limited song learners which sing stereotyped songs throughout life. However, little attention has been paid to non‐learned song features that can change plastically even in adulthood of age‐limited song‐learners. Although it has been shown that food availability affects song rate in wild songbirds, there is limited evidence of the link between favorable nutritional conditions and song phenotypes other than song rate. Under the prediction that singing behavior reflects an individual's recent life history, we kept adult Bengalese finch males under high‐nutrition or normal diet for a short term, and examined changes in body mass and songs. We found that birds on a high‐nutrition diet showed higher song output (e.g. song rate and length) compared with those of the control group, while changes in body mass were moderate. In addition, note repertoire became more consistent and temporal structures got faster in both nutrition and control groups, which indicates that songs were subject to other factors than nutrition. Considering that female estrildid finches, including Bengalese and zebra finches, show a preference toward complex songs as well as longer songs and higher song rate, it is plausible that different aspects of singing behavior signal different male qualities, and provide multifaceted clues to females that choose mates.  相似文献   

17.
Perineuronal nets (PNN) are aggregations of chondroitin sulfate proteoglycans surrounding the soma and proximal processes of neurons, mostly GABAergic interneurons expressing parvalbumin. They limit the plasticity of their afferent synaptic connections. In zebra finches PNN develop in an experience‐dependent manner in the song control nuclei HVC and RA (nucleus robustus arcopallialis) when young birds crystallize their song. Because songbird species that are open‐ended learners tend to recapitulate each year the different phases of song learning until their song crystallizes at the beginning of the breeding season, we tested whether seasonal changes in PNN expression would be found in the song control nuclei of a seasonally breeding species such as the European starling. Only minimal changes in PNN densities and total number of cells surrounded by PNN were detected. However, comparison of the density of PNN and of PNN surrounding parvalbumin‐positive cells revealed that these structures are far less numerous in starlings that show extensive adult vocal plasticity, including learning of new songs throughout the year, than in the closed‐ended learner zebra finches. Canaries that also display some vocal plasticity across season but were never formally shown to learn new songs in adulthood were intermediate in this respect. Together these data suggest that establishment of PNN around parvalbumin‐positive neurons in song control nuclei has diverged during evolution to control the different learning capacities observed in songbird species. This differential expression of PNN in different songbird species could represent a key cellular mechanism mediating species variation between closed‐ended and open‐ended learning strategies. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 975–994, 2017  相似文献   

18.
Based on statistical analyses of song sequences, Bengalese finch (Lonchura striata var. domestica) songs do not show unvarying motif repetition as has been found in zebra finches (Taeniopygia guttata). Instead, there are variations of partially stereotyped sequences of song syllables. Although these stereotyped sequences consist of multiple syllables, in most cases these syllables occur together. To examine whether such structures really exist as a vocal production unit, we subjected singing birds to a light flash and determined when the stimulus stopped the songs. When light interruptions were presented within the statistically stereotyped sequences, the subsequent syllables tended to be produced, whereas interruptions presented during the statistically variable sequences tended to cause instantaneous song termination. This suggests that the associations among the song syllables that compose the statistically stereotyped sequences are more order dependent than those for the statistically variable sequences, and the tolerances of syllable pairs to visual interruptions are consistent with the statistical song structures. Additionally, following interruptions, several types of song sequence variations were observed that had not been previously reported. These phenomena might be caused by various effects of the visual stimulus on the hierarchical motor control program.  相似文献   

19.
We investigated the effects of audiovisual compound training on song learning in zebra finches, Taeniopygia guttata. In the first experiment, presentation of a stuffed adult zebra finch male was found to be reinforcing to zebra finch males in an operant task. In a separate experiment, zebra finch males were reared without their father from day 7 after hatching onwards. Between 35 and 76 days, they were placed in isolation and exposed to taped songs of a zebra finch male, according to a random schedule (20 presentations/h). For half of the birds, presentation of the song coincided with presentation of a stuffed zebra finch male. For the remaining birds, each presentation of the song was followed by presentation of a stuffed male. The birds were subsequently isolated until day 142, when their own songs were recorded and analysed. Birds in both groups shared significantly more song elements with their tutor songs than with an unfamiliar song. There was no significant difference in song learning between the groups. These results confirm that zebra finches can learn part of their songs from taped tutor songs. Furthermore, simultaneous presentation of the tutor song and a relevant, salient visual stimulus is not superior to sequential presentation. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

20.
This study addressed the question of how early learning processes in females influence later preferences for a male trait. I tested whether exposure to song alone (of a male other than the father) was sufficient for inducing a stable (repeatable) preference in female zebra finches (Taeniopygia guttata) by limiting early exposure to tape tutoring. A group of controls heard no songs before also being tested in adulthood. Repeated tests for preferences for tutor or unfamiliar song were made, interspersed with additional tests involving new songs. Preferences were tested in an operant task where pecking of response keys led to song playback. Most females significantly preferred one of the two songs in a given test. In the first test, the relative preference for the tutor song was significantly higher for the tutored than for the control females. Subsequently, tutored females' preferences for the tutor song remained higher on average, but the two groups did not differ significantly. However, tutored, but not untutored females' preferences were highly repeatable between tests, suggesting that early exposure to song might lead to a consolidation ol choice behaviour, a previously unknown effect of early exposure to song in female songbirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号