首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback (Gasterosteus aculeatus) in the Baltic Sea. Two morphotype groups with different levels of body armor—completely plated and incompletely plated—are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near‐shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch (Perca fluviatilis) and pike (Esox lucius). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat‐forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.  相似文献   

3.
《Global Change Biology》2018,24(1):308-321
Conserving native biodiversity in the face of human‐ and climate‐related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal‐habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance‐related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3‐km sites within the Upper Neosho River subdrainage, KS, from June‐August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal‐habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human‐altered ecosystems.  相似文献   

4.
Sea level rise (SLR) threatens coastal wetlands worldwide, yet the fate of individual wetlands will vary based on local topography, wetland morphology, sediment dynamics, hydrologic processes, and plant‐mediated feedbacks. Local variability in these factors makes it difficult to predict SLR effects across wetlands or to develop a holistic regional perspective on SLR response for a diversity of wetland types. To improve regional predictions of SLR impacts to coastal wetlands, we developed a model that addresses the scale‐dependent factors controlling SLR response and accommodates different levels of data availability. The model quantifies SLR‐driven habitat conversion within wetlands across a region by predicting changes in individual wetland hypsometry. This standardized approach can be applied to all wetlands in a region regardless of data availability, making it ideal for modeling SLR response across a range of scales. Our model was applied to 105 wetlands in southern California that spanned a broad range of typology and data availability. Our findings suggest that if wetlands are confined to their current extents, the region will lose 12% of marsh habitats (vegetated marsh and unvegetated flats) with 0.6 m of SLR (projected for 2050) and 48% with 1.7 m of SLR (projected for 2100). Habitat conversion was more drastic in wetlands with larger proportions of marsh habitats relative to subtidal habitats and occurred more rapidly in small lagoons relative to larger sites. Our assessment can inform management of coastal wetland vulnerability, improve understanding of the SLR drivers relevant to individual wetlands, and highlight significant data gaps that impede SLR response modeling across spatial scales. This approach augments regional SLR assessments by considering spatial variability in SLR response drivers, addressing data gaps, and accommodating wetland diversity, which will provide greater insights into regional SLR response that are relevant to coastal management and restoration efforts.  相似文献   

5.
While patterns in species diversity have been well studied across large‐scale environmental gradients, little is known about how species’ interaction networks change in response to abiotic and biotic factors across such gradients. Here we studied seed‐dispersal networks on 50 study plots distributed over ten different habitat types on the southern slopes of Mt Kilimanjaro, Tanzania, to disentangle the effects of climate, habitat structure, fruit diversity and fruit availability on different measures of interaction diversity. We used direct observations to record the interactions of frugivorous birds and mammals with fleshy‐fruited plants and recorded climatic conditions, habitat structure, fruit diversity and availability. We found that Shannon interaction diversity (H) increased with fruit diversity and availability, whereas interaction evenness (EH) and network specialization (H2) responded differently to changes in fruit availability depending on habitat structure. The direction of the effects of fruit availability on EH and H2 differed between open habitats at the mountain base and structurally complex habitats in the forest belt. Our findings illustrate that interaction networks react differently to changes in environmental conditions in different ecosystems. Hence, our findings demonstrate that future projections of network structure and associated ecosystem functions need to account for habitat differences among ecosystems.  相似文献   

6.
Current issues in marine resource management have in common a geospatial component and a need to integrate both biotic and abiotic data from various sources. We propose a practical approach to address these issues looking at the American plaice (Hippoglossoides platessoides) and the demersal fish fauna in the Gulf of St. Lawrence (Canada). Central to our approach was the use of a common spatial grid and three different methods to match biotic and abiotic features at a broad regional scale, (1) matching plaice distribution with habitat categories determined a priori on the basis of abiotic features (cluster analysis), (2) habitat categories determined taking into consideration both plaice density and abiotic features (simple regression tree), and (3) habitat categories determined taking into consideration demersal fish species density (70 fish species) and abiotic features (multivariate regression tree, MRT). Hot spots and cold spots of plaice abundance in summer were described and matched with specific habitats. The spatial distribution of habitats was similar whether biotic variables were used in the classification or not. The MRT, however, identified 56 different fish species in the plaice habitat (median species richness by 100 km2 cell = 12), pointing to potential interactions with other fish species.  相似文献   

7.
《Global Change Biology》2018,24(5):1904-1918
Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat‐forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta‐diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance‐ and incidence‐based beta‐diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within‐region comparisons using abundance‐ and incidence‐based measures of beta‐diversity, and in across‐region comparisons using incidence‐based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta‐diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land‐ and seascapes, as well as managing anthropogenic impacts in high activity areas.  相似文献   

8.
Estuaries are globally important to fisheries but face many anthropogenic stressors that reduce water quality and degrade benthic habitat. The Maumee River estuary has been degraded by industrial contaminants, high sediment and nutrient loads, channelization and elimination of surrounding wetlands, lessening its value as spawning habitat for fishes of Lake Erie. Regulation and better management practices (BMPs) in the watershed have improved the water quality in this estuary, which should result in a response of the biotic community. We compared recent (2010/2011) larval fish assemblage data to similar data from the 1970s (1976/1977) in order to identify changes due to improved water and habitat quality. Family‐level diversity was greater in recent study years compared to the 1970s and family richness increased from 6 to 10. In addition, the abundance of lithophilic spawning fishes was significantly greater in the recent study years. Increased diversity and family richness were consistent with increased water quality in the Maumee River whereas the observed increase in abundance of lithophilic spawners was consistent with an increase in the amount or quality of benthic habitat used by species in these families for spawning. Better wastewater management and agricultural practices in coastal watersheds can benefit the early life stages of fishes, thus benefitting coastal fisheries. Furthermore, larval fish assemblages may be useful indicators of biological integrity because of their sensitivities to environmental change. Routine sampling of estuarine larval fish assemblages could provide practitioners with insight into ecosystem changes and measure the response of the biotic community to restoration.  相似文献   

9.
Parasite communities of fishes are known to respond directly to the abiotic environment of the host, for example, to water quality and water temperature. Biotic factors are also important as they affect the exposure profile through heterogeneities in parasite distribution in the environment. Parasites in a particular environment may pose a strong selection on fish. For example, ecological differences in selection by parasites have been hypothesized to facilitate evolutionary differentiation of freshwater fish morphs specializing on different food types. However, as parasites may also respond directly to abiotic environment the parasite risk does not depend only on biotic features of the host environment. It is possible that different morphs experience specific selection gradients by parasites but it is not clear how consistent the selection is when abiotic factors change. We examined parasite pressure in sympatric morphs of threespine stickleback (Gasterosteus aculeatus) across a temperature gradient in two large Icelandic lakes, Myvatn and Thingvallavatn. Habitat‐specific temperature gradients in these lakes are opposite. Myvatn lava rock morph lives in a warm environment, while the mud morph lives in the cold. In Thingvallavatn, the lava rock morph lives in a cold environment and the mud morph in a warm habitat. We found more parasites in fish living in higher temperature in both lakes, independent of the fish morph, and this pattern was similar for the two dominating parasite taxa, trematodes and cestodes. However, at the same time, we also found higher parasite abundance in a third morph living in deep cold–water habitat in Thingvallavatn compared to the cold‐water lava morph, indicating strong effect of habitat‐specific biotic factors. Our results suggest complex interactions between water temperature and biotic factors in determining the parasite community structure, a pattern that may have implications for differentiation of stickleback morphs.  相似文献   

10.
Species’ ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species’ distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short‐term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state‐space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden‐winged Warblers (Vermivora chrysoptera) and Blue‐winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden‐winged Warbler, the predicted presence of the Blue‐winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site‐level species replacement. Given the overall importance of biotic factors on range‐wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species’ need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.  相似文献   

11.
1. Numerous interacting abiotic and biotic factors influence niche use and assemblage structure of freshwater fishes, but the strength of each factor changes with spatial scale. Few studies have examined the role of interspecific competition in structuring stream fish assemblages across spatial scales. We used field and laboratory approaches to examine microhabitat partitioning and the effect of interspecific competition on microhabitat use in two sympatric stream fishes (Galaxias‘southern’ and Galaxias gollumoides) at large (among streams and among sites within streams) and small (within artificial stream channels) spatial scales. 2. Diurnal microhabitat partitioning and interspecific competition at large spatial scales were analysed among three sympatry streams (streams with allotopic and syntopic sites; three separate catchments) and four allopatry streams (streams with only allotopic sites; two separate catchments). Electro‐fishing was used to sample habitat use of fishes at 30 random points within each site by quantifying four variables for each individual: water velocity, depth, distance to nearest cover and substratum size. Habitat availability was then quantified for each site by measuring those variables at each of 50 random points. Diet and stable isotope partitioning was analysed from syntopic sites only. Diel cycles of microhabitat use and interspecific competition at small spatial scales were examined by monitoring water velocity use over 48 h in artificial stream channels for three treatments: (i) allopatric G. ‘southern’ (10 G. ‘southern’); (ii) allopatric G. gollumoides (10 G. gollumoides) and (iii) sympatry (five individuals of each species). 3. One hundred and ninety‐four G. ‘southern’ and 239 G. gollumoides were sampled across all seven streams, and habitat availability between the two species was similar among all sites. Galaxias‘southern’ utilised faster water velocities than G. gollumoides in both the field and in channel experiments. Both species utilised faster water velocities in channels at night than during the day. Diet differences were observed and were supported by isotopic differences (two of three sites). No interspecific differences were observed for the other three microhabitat variables in the field, and multivariate habitat selection did not differ between species. Interspecific competition had no effect on microhabitat use of either species against any variable either in the field (large scale) or in channels (small scale). 4. The results suggest that niche partitioning occurs along a subset of microhabitat variables (water velocity use and diet). Interspecific competition does not appear to be a major biotic factor controlling microhabitat use by these sympatric taxa at any spatial scale. The results further suggest that stream fish assemblages are not primarily structured by biotic factors, reinforcing other studies de‐emphasising interspecific competition.  相似文献   

12.
Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north‐western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land‐use practice over the past 6000 years. We compare the beta‐diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat‐specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic ‘heterogenisation’ after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land‐use practices can instead be crucial for the maintenance of the diversity and ecological function of a seminatural ecosystem. The species that established after prescribed burning were heathland specialists with relatively narrow geographical ranges.  相似文献   

13.
Coral reef banks may form an important component of mesophotic coral ecosystems (MCEs) in the Caribbean, but remain poorly explored relative to shallower reefs and mesophotic habitats on slopes and walls. Consequently, the processes structuring mesophotic coral reef communities are not well understood, particularly the role of disturbance. A large and regionally important mesophotic system, the Hind Bank Marine Conservation District (MCD), St. Thomas, USVI, was systematically surveyed. Data were used to construct a comprehensive benthic habitat map for the MCD, describe the abiotic and biotic components of the benthos among habitats, and investigate patterns of coral health among habitats. Two-thirds of the MCD (23.6 km2) was found to be dense coral reef (Coral Cover = 24.1%) dominated by the Montastraea annularis species complex. Coral reef ecosystems were topographically complex, but could be classified into distinct habitat types, including high coral banks (35.8% of the MCD) and two large novel coral reef habitat types corresponding to an extremely flat basin (18%) and a highly rugose hillock basin (6.5%), containing thousands of coral knolls (2–10 m high). An extreme disease event with undescribed signs of mortality occurred on 47% of coral reefs and reached a high prevalence in affected areas (42.4% ± 6.3 SE, N = 26). The disease was significantly clustered in the basin habitats of the western MCD (global Moran’s I = 0.32, P < 0.01). Observations of the spatial pattern suggested that the driver was specific to the basin habitats and may have been caused by a coherent abiotic event.  相似文献   

14.
Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.  相似文献   

15.
Negative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half‐mature forest (HF), a mature forest (MF), and an old‐growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (<20 cm in height) and younger seedlings (1–2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage.  相似文献   

16.
Man‐made infrastructures have become ubiquitous components of coastal landscapes, leading to habitat modification that affects the abundance and diversity of marine organisms. Marine coastal fish have a complex life cycle requiring different essential habitats. One of these habitats is known as a nursery, a place where juveniles can settle in large numbers, survive, and grow to contribute to the adult population. Nurseries are mainly found in shallow, sheltered zones and are thus particularly impacted by urbanization, notably by harbors. The vertical featureless structure of docks is very unlikely to be used by juveniles, which need complex habitats to find food and shelter from predators. Recent attempts to rehabilitate the nursery function in such environments by using artificial habitats have proven efficient in increasing juvenile densities. However, nothing is known about the survival of juveniles in these habitats, preventing any conclusions on the effectiveness of this means of restoration from being drawn. Here, we set up tank experiments to test the relationship between habitat preferences and the survival rate of two species of seabream when facing stalk‐attacking combers. Habitat choice was consistent with survival results, indicating that artificial habitats might not represent unintended ecological traps for juveniles. However, the artificial habitats' effect on survival was variable between species. Therefore, our results suggest that habitat diversity might be of prime importance to sustain juveniles of different species and stress the need for the development of diverse artificial habitats to counteract the effects of seascape homogenization.  相似文献   

17.
We synthesized information on temporal and spatial patterns of salt marsh habitat use by nekton in order to infer the importance of five main types of marsh function: reproduction, foraging, refuge from predation, refuge from stressful environmental conditions and environmental enhancement of physiology. We then extended the concept that intertidal gradients regulate habitat use patterns of nekton to a more universal concept that applies to all salt marsh habitats. We contend that all marsh habitats are linked to each other and to adjacent estuarine habitats along a depth gradient that mediates gradients in abiotic and biotic conditions. Tidal, diel and seasonal shifts in the magnitude and direction of these gradients result in gradients in tidal, diel and seasonal variation in biotic and abiotic conditions within the salt marsh. Collectively these gradients form the `marsh gradient'. We propose that patterns of marsh use and ecological function for nekton result primarily from physiological and behavioral responses to this marsh gradient. A comparison of habitat use patterns in the context of the marsh gradient is an important – and underutilized – method to study marsh function and essential fish habitat. We note that our limited insight into the function of the marsh habitat results from a significant lack of information on the occurrence and causes of tidal, diel and ontogenetic marsh use patterns by nekton; this is particularly relevant with respect to data on the variation in environmental conditions along marsh gradients over tidal, diel and seasonal cycles and on how environmental variation on these scales influences nekton behavior, growth and survival.  相似文献   

18.
Summary In many ecosystems, increases in vegetation density and the resulting closure of forest canopies are threatening the viability of species that depend upon open, sunlight‐exposed habitats. Consequently, we need to develop management strategies that recreate open habitats while minimizing the impacts on non‐target areas. Selective logging creates canopy gaps, but may result in undesirable effects in other respects. Thus, chainsaws have not been a popular tool for conservation. We conducted a landscape‐scale experiment to test whether selective tree removal can restore patch‐level habitat quality for Australia’s most endangered snake (Hoplocephalus bungaroides) and its main prey (the lizard Oedura lesueurii). We selectively removed canopy trees surrounding 25 overgrown rock outcrops and compared the resultant habitat structure and abiotic conditions to 30 overgrown, shady outcrops and 20 open, sunny outcrops. Removing vegetation decreased canopy cover by 19% in experimental plots and increased incident radiation and thermal regimes. These changes increased the availability of suitable shelter sites for our target species by 131%. At the landscape scale, our manipulations had a trivial effect on forest habitat; by increasing the area of sun‐exposed outcrops, we decreased forest cover by <0.1%. Our results show that targeted canopy removal can increase the availability of sun‐exposed habitat patches for endangered species in biologically meaningful ways. Thus, selective tree felling may be an effective conservation tool for open‐habitat specialists threatened by vegetation overgrowth.  相似文献   

19.
Conservation measures often rely on habitat management, so knowledge about a species’ habitat use is a prerequisite for effective conservation planning. The Little Bustard Tetrax tetrax, a medium‐sized bird native to the Palaearctic steppes and today found in extensively farmed habitats, is a threatened species. Its population experienced a 94% decline in farmland habitats in France between 1982 and 1996, and populations all over Europe have suffered equally sharp declines. Due to this steep negative trend, this species has been the subject of a number of habitat selection studies in order to develop relevant conservation measures based on its habitat requirements. In this study, we investigated the habitat selection of a range of habitat types by both sexes and at two nested spatial scales: plot scale and landscape scale. In addition, we analysed intra‐specific social interactions by incorporating conspecific density in the statistical models of habitat use. The study was conducted on a very high‐density population, perhaps the highest ever recorded for this species at around 50 Bustards per 100 ha of suitable habitat. Our methodology combined two field approaches (point counts and quadrat counts). The findings showed rather limited sexual dimorphism in terms of habitat selection at a local scale, with only vegetation height differing between sexes at a micro‐habitat scale, no selection at landscape scale, and a prevailing role of social factors at both scales. The implications for future conservation strategies in relation to population density and landscape composition are discussed.  相似文献   

20.
We compiled data from different monitoring surveys to analyse and compare community and diversity patterns of fish, epi- and infauna in the German Exclusive Economic Zone (EEZ) of the North Sea in order to identify benthic habitats common to all faunal components. We found congruent community patterns of fish, epi- and infauna for the coastal waters, the Oysterground and the area called “Duck’s Bill”, which coincided with specific abiotic characteristics of these regions. The three regions were defined as special habitats for fish, epi- and infauna species in the German EEZ. The differences in the seasonal variability of abiotic factors seem to be the most important discriminating abiotic characteristic for the three habitats. The spatial distribution of fish, epifauna and infauna communities remained stable over time although habitat characteristics such as sea surface temperature increased due to climate change. However, it is expected that the coastal habitat will be more sensitive to future climate change effects in contrast to the Oysterground and Duck’s Bill habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号