首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
2.
Unravelling relationships between dispersal and population structure requires considering the impacts of assumption violations of indirect gene flow models in a given system. We combined temporal, individual and coalescent-based analyses of microsatellite DNA variation to explore the general hypothesis that unequal effective population size (Ne), asymmetric gene flow (m) and nonrandom (sex-biased) individual dispersal had an important effect on spatiotemporal population structuring in lake-dwelling brook charr (Salvelinus fontinalis). This integrative examination shed light on the dichotomous structuring observed between an outlet and three tributary-spawning populations and their potential for adaptive divergence. It revealed further that finer tributary population structuring incongruent with drainage structure has been shaped by asymmetric m from one population with a large Ne towards two populations of smaller Ne. Gene flow among the tributaries was also mediated mainly by male-biased dispersal. However, longer distance dispersal from tributaries to the outflow was female-biased. Spatially dependent sex-biased dispersal may have contributed therefore to gene flow at different levels of population structuring. Our results demonstrate how dispersal and population structure may interrelate to produce spatial variation in intraspecific diversity, and are therefore relevant for conservation programmes seeking to define conservation units or predict recolonization rates of extirpated populations.  相似文献   

3.
Gene flow in animals is limited or facilitated by different features within the landscape matrix they inhabit. The landscape representation in landscape genetics (LG) is traditionally modeled as resistance surfaces (RS), where novel optimization approaches are needed for assigning resistance values that adequately avoid subjectivity. Also, desert ecosystems and mammals are scarcely represented in LG studies. We addressed these issues by evaluating, at a microgeographic scale, the effect of landscape features on functional connectivity of the desert‐dwelling Dipodomys merriami. We characterized genetic diversity and structure with microsatellites loci, estimated home ranges and movement of individuals using telemetry—one of the first with rodents, generated a set of individual and composite environmental surfaces based on hypotheses of variables influencing movement, and assessed how these variables relate to individual‐based gene flow. Genetic diversity and structure results evidenced a family‐induced pattern driven by first‐order‐related individuals, notably determining landscape genetic inferences. The vegetation cover and soil resistance optimized surface (NDVI) were the best‐supported model and a significant predictor of individual genetic distance, followed by humidity and NDVI+humidity. Based on an accurate definition of thematic resolution, we also showed that vegetation is better represented as continuously (vs. categorically) distributed. Hence, with a nonsubjective optimization framework for RS and telemetry, we were able to describe that vegetation cover, soil texture, and climatic variables influence D. merriami's functional connectivity at a microgeographic scale, patterns we could further explain based on the home range, habitat use, and activity observed between sexes. We describe the relationship between environmental features and some aspects of D. merriami‘s behavior and physiology.  相似文献   

4.
Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low‐latitude/low‐elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate‐induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual‐based model. We compare range‐wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low‐quality habitat. However, this initial dispersal advantage at low‐fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate.  相似文献   

5.
Discrete color polymorphisms represent a fascinating aspect of intraspecific diversity. Color morph ratios often vary clinally, but in some cases, there are no marked clines and mixes of different morphs occur at appreciable frequencies in most populations. This poses the questions of how polymorphisms are maintained. We here study the spatial and temporal distribution of a very conspicuous color polymorphism in the club‐legged grasshopper Gomphocerus sibiricus. The species occurs in a green and a nongreen (predominately brown) morph, a green–brown polymorphism that is common among Orthopteran insects. We sampled color morph ratios at 42 sites across the alpine range of the species and related color morph ratios to local habitat parameters and climatic conditions. Green morphs occurred in both sexes, and their morph ratios were highly correlated among sites, suggesting shared control of the polymorphism in females and males. We found that in at least 40 of 42 sites green and brown morphs co‐occurred with proportions of green ranging from 0% to 70% with significant spatial heterogeneity. The proportion of green individuals tended to increase with decreasing summer and winter precipitations. Nongreen individuals can be further distinguished into brown and pied individuals, and again, this polymorphism is shared with other grasshopper species. We found pied individuals at all sites with proportions ranging from 3% to 75%, with slight, but significant variation between years. Pied morphs show a clinal increase in frequency from east to west and decreased with altitude and lower temperatures and were more common on grazed sites. The results suggest that both small‐scale and large‐scale spatial heterogeneity affects color morph ratios. The almost universal co‐occurrence of all three color morphs argues against strong effects of genetic drift. Instead, the data suggest that small‐scale migration–selection balance and/or local balancing selection maintain populations polymorphic.  相似文献   

6.
The distribution of suitable habitat influences natal and breeding dispersal at small spatial scales, resulting in strong microgeographic genetic structure. Although environmental variation can promote interpopulation differences in dispersal behavior and local spatial patterns, the effects of distinct ecological conditions on within‐species variation in dispersal strategies and in fine‐scale genetic structure remain poorly understood. We studied local dispersal and fine‐scale genetic structure in the thorn‐tailed rayadito (Aphrastura spinicauda), a South American bird that breeds along a wide latitudinal gradient. We combine capture‐mark‐recapture data from eight breeding seasons and molecular genetics to compare two peripheral populations with contrasting environments in Chile: Navarino Island, a continuous and low density habitat, and Fray Jorge National Park, a fragmented, densely populated and more stressful environment. Natal dispersal showed no sex bias in Navarino but was female‐biased in the more dense population in Fray Jorge. In the latter, male movements were restricted, and some birds seemed to skip breeding in their first year, suggesting habitat saturation. Breeding dispersal was limited in both populations, with males being more philopatric than females. Spatial genetic autocorrelation analyzes using 13 polymorphic microsatellite loci confirmed the observed dispersal patterns: a fine‐scale genetic structure was only detectable for males in Fray Jorge for distances up to 450 m. Furthermore, two‐dimensional autocorrelation analyzes and estimates of genetic relatedness indicated that related males tended to be spatially clustered in this population. Our study shows evidence for context‐dependent variation in natal dispersal and corresponding local genetic structure in peripheral populations of this bird. It seems likely that the costs of dispersal are higher in the fragmented and higher density environment in Fray Jorge, particularly for males. The observed differences in microgeographic genetic structure for rayaditos might reflect the genetic consequences of population‐specific responses to contrasting environmental pressures near the range limits of its distribution.  相似文献   

7.
  1. Previous macrophysiological studies suggested that temperature‐driven color lightness and body size variations strongly influence biogeographical patterns in ectotherms. However, these trait–environment relationships scale to local assemblages and the extent to which they can be modified by dispersal remains largely unexplored. We test whether the predictions of the thermal melanism hypothesis and the Bergmann's rule hold for local assemblages. We also assess whether these trait–environment relationships are more important for species adapted to less stable (lentic) habitats, due to their greater dispersal propensity compared to those adapted to stable (lotic) habitats.
  2. We quantified the color lightness and body volume of 99 European dragon‐ and damselflies (Odonata) and combined these trait information with survey data for 518 local assemblages across Europe. Based on this continent‐wide yet spatially explicit dataset, we tested for effects temperature and precipitation on the color lightness and body volume of local assemblages and assessed differences in their relative importance and strength between lentic and lotic assemblages, while accounting for spatial and phylogenetic autocorrelation.
  3. The color lightness of assemblages of odonates increased, and body size decreased with increasing temperature. Trait–environment relationships in the average and phylogenetic predicted component were equally important for assemblages of both habitat types but were stronger in lentic assemblages when accounting for phylogenetic autocorrelation.
  4. Our results show that the mechanism underlying color lightness and body size variations scale to local assemblages, indicating their general importance. These mechanisms were of equal evolutionary significance for lentic and lotic species, but higher dispersal ability seems to enable lentic species to cope better with historical climatic changes. The documented differences between lentic and lotic assemblages also highlight the importance of integrating interactions of thermal adaptations with proxies of the dispersal ability of species into trait‐based models, for improving our understanding of climate‐driven biological responses.
  相似文献   

8.
Local adaptation, which has been detected for several wild pathosystems is influenced by gene flow and recombination. In this study, we investigate local adaptation and population structure at a fine scale in wild populations of a plant-pathogen fungus. We sampled hierarchically strains of Colletotrichum lindemuthianum in a wild population of its host. The analysis of AFLP patterns obtained for 86 strains indicated that: (i) many different haplotypes can be discriminated, although occurrence of recombination could not be shown; (ii) migration between adjacent plants seemed rare during the season; and (iii) neutral diversity is structured according to groups of plants and individual host plants. Furthermore, we tested for the occurrence of local adaptation using a cross-inoculation experiment. Our results showed local adaptation at the scale of the individual host plant. These results indicate that fine-scale dynamics has evolutionary consequences in this pathosystem.  相似文献   

9.
Sex‐biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white‐browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation‐by‐distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within‐group genetic structure among females than males. Examining the spatial scale of extra‐group mating highlighted that the resulting ‘sperm dispersal’ could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex‐reversed patterns of dispersal in white‐browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected.  相似文献   

10.
We outline the potentially important role of dispersal in linking diversity patterns at different spatial and temporal scales, and the resulting potential to link hypotheses explaining macroscale patterns of diversity. We do this by proposing a possible mechanism linking climate to diversity patterns: we argue that climate, via effects of continuity of habitat availability in space and time, mediates a dispersal–ecological specialization trade‐off at the metacommunity level that leads to latitudinal trends in dispersal ability, ecological specialization, range sizes, speciation and species richness, ultimately driving the latitudinal diversity gradient. This trade‐off constitutes a possible mechanism for the strong macroscale correlation between climate and species richness that is consistent with recent ideas about niche conservatism and gradient lengths, as well as other leading hypotheses. We present an overview of predictions derived from our ideas. Of these, some have already been tested and supported and others are still open to debate or need testing. Together they provide a unique set of predictions that allows falsification.  相似文献   

11.
For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens—hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual‐level simulations to investigate the effects of dispersal and mating system on fine‐scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine‐scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex‐biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine‐scale genetic structure.  相似文献   

12.
Dispersal is a critical process for the persistence and productivity of marine populations. For many reef species, there is increasing evidence that local demography and self‐recruitment have major consequences on their genetic diversity and adaptation to environmental change. Yet empirical data of dispersal patterns in reef‐building species remain scarce. Here, we document the first genetic estimates of self‐recruitment and dispersal distances in a free‐spawning marine invertebrate, the hydrocoral Millepora cf. platyphylla. Using twelve microsatellite markers, we gathered genotypic information from 3,160 georeferenced colonies collected over 27,000 m2 of a single reef in three adjacent habitats in Moorea, French Polynesia; the mid slope, upper slope, and back reef. Although the adult population was predominantly clonal (85% were clones), our parentage analysis revealed a moderate self‐recruitment rate with a minimum of 8% of sexual propagules produced locally. Assigned offspring often settled at <10 m from their parents and dispersal events decrease with increasing geographic distance. There were no discrepancies between the dispersal distances of offspring assigned to parents belonging to clonal versus nonclonal genotypes. Interhabitat dispersal events via cross‐reef transport were also detected for sexual and asexual propagules. Sibship analysis showed that full siblings recruit nearby on the reef (more than 40% settled at <30 m), resulting in sibling aggregations. Our findings highlight the importance of self‐recruitment together with clonality in stabilizing population dynamics, which may ultimately enhance local sustainability and resilience to disturbance.  相似文献   

13.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

14.
15.
Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three‐spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three‐spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation.  相似文献   

16.
The newly introduced mosquito Aedes japonicus has expanded from its original range in Northeastern Asia to 29 US states (including Hawaii) plus Canada and northern Europe. Our objectives were to test an earlier hypothesis of multiple introductions of this species to the Northeastern US and evaluate putative temporal changes in genetic makeup. Using a panel of seven microsatellite loci, we confirmed the existence of two abundant genetic forms in specimens originally collected in 1999–2000 (FST value based on microsatellite data = 0.26) that matches the disjunctive distribution of mitochondrial haplotypes. To examine the distribution of the two genetic ‘types’ across Pennsylvania we created a fine‐scale genetic map of Ae. japonicus using 439 specimens collected from 54 Pennsylvania counties in 2002–2003. We also made direct comparisons between collections in 1999–2000 and new collections made in 2004–2005 obtained from the same areas in the northeastern US. We observed that the strong association between mtDNA haplotype and microsatellite signature seen in 1999–2000 had weakened significantly by 2002 across Pennsylvania, a trend continued to some extent in 2004–2005 in PA, NJ, and NY, indicating that once easily distinguishable separate introductions are merging. The two expanding genetic forms create a complex correlation between spatial and genetic distances. The existence of multiple introductions would be obscured without sampling early and across time with highly polymorphic molecular markers. Our results provide a high‐resolution analysis of the spatial and temporal dynamics of a newly introduced disease vector and argue that successive introductions may be a common pattern for invasive mosquitoes.  相似文献   

17.
Population genetics and phenotypic structures are often predicted to vary along the geographic range of a species. This phenomenon would be accentuated for species with large range areas, with discontinuities and marginal populations. We herein compare the genetic patterns of central populations of Coccinella septempunctata L. with those of two phenotypically differentiated populations considered as rear‐edge populations and subspecies based on phenotype (Algeria and Japan). According to the central‐marginal model and expected characteristics of rear‐edge populations, we hypothesize that these rear‐edge populations have (1) a reduced genetic diversity, resulting from their relative isolation over long periods of time, (2) a higher population genetic differentiation, explained by low contemporary gene flow levels, and (3) a relationship between genetic diversity characteristics and phenotypes, due to historical isolation and/or local adaptation. Based on genotyping of 28 populations for 18 microsatellite markers, several levels of regional genetic diversity and differentiation are observed between and within populations, according to their localization: low within‐population genetic diversity and higher genetic differentiation of rear‐edge populations. The genetic structuring clearly dissociates the Algerian and Eastern Asia populations from the others. Geographical patterns of genetic diversity and differentiation support the hypothesis of the central‐marginal model. The pattern observed is in agreement with the phenotypic structure across species range. A clear genetic break between populations of Algeria, the Eastern Asia, and the remaining populations is a dominant feature of the data. Differential local adaptations, absence of gene flow between marginal and central populations, and/or incapacity to mate after colonization, have contributed to their distinct genotypic and phenotypic characteristics.  相似文献   

18.
Understanding the factors that determine rates of range expansion is not only crucial for developing risk assessment schemes and management strategies for invasive species, but also provides important insight into the ability of species to disperse in response to climate change. However, there is little knowledge on why some invasions spread faster than others at large spatiotemporal scales. Here, we examine the effects of human activities, species traits and characteristics of the invaded range on spread rates using a global sample of alien reptile and amphibian introductions. We show that spread rates vary remarkably among invaded locations within a species, and differ across biogeographical realms. Spread rates are positively related to the richness of native congeneric species and human‐assisted dispersal in the invaded range but are negatively correlated with topographic heterogeneity. Our findings highlight the importance of environmental characteristics and human‐assisted dispersal in developing robust frameworks for predicting species' range shifts.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号