首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
《Journal of morphology》2017,278(4):475-485
The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso‐ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non‐invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso‐ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark‐based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra , despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475–485, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

3.
Biogeographic studies in Amazonia typically describe biodiversity across interfluvia, rarely within them, where geographic variability in morphological traits might be observed. We tested for intraspecific phenotypic variation in three bird species within the Purus–Madeira interfluvium (Central Amazon) and whether phenotypes were correlated with environmental heterogeneity or geographic distance among sites. We compared coloration indexes derived from reflectance spectra and morphometrics of up to five adult individuals of each sex among 11 sites within the interfluvium and contrasted them with proxies for geographic distance and environmental variation (tree basal area and bird community). Environmental heterogeneity was minimally spatially autocorrelated, and there were no obvious geographical barriers to dispersal in the study region. The null hypothesis was that we would see either no phenotypic variation or random variation that was not explained by the tested variables. Half of the cases analyzed showed intraspecific morphological variation. Coloration varied more frequently than morphometrics, and color was better explained by environmental heterogeneity, particularly in males, whereas brightness also varied with geographic distance. Geographic distance explained the only case of variation in morphometrics. Our results indicate that coloration, particularly plumage brightness, is more labile than morphometric traits and that plumage color might be under stronger effects of local adaptation than brightness, which also seems to be under effects of neutral drift and gene flow among populations. Higher frequencies of association between male coloration and the environment suggest a role of non-arbitrary mechanisms of sexual selection on the expression of male phenotypes, whereas arbitrary intersexual selection might explain the randomly distributed variation that is not explained by environmental heterogeneity or geographic distance. We revealed intraspecific phenotypic variation in a spatial extent usually not considered in biogeographic studies in the Amazon and demonstrate that both local adaptation and neutral drift are important to explain intraspecific trait diversification at this geographical scale.  相似文献   

4.
Environmental variation is a potent force affecting phenotypic expression. While freshwater fishes have provided a compelling example of the link between the environment and phenotypic diversity, few studies have been conducted with arid‐zone fishes, particularly those that occur in geographically isolated regions where species typically inhabit intermittent and ephemeral creeks. We investigated morphological variation of a freshwater fish (the western rainbowfish, Melanotaenia australis) inhabiting creeks in the Pilbara region of northwest Australia to determine whether body shape variation correlated with local environmental characteristics, including water velocity, habitat complexity, predator presence, and food availability. We expected that the geographic isolation of creeks within this arid region would result in habitat‐specific morphological specializations. We used landmark‐based geometric morphometrics to quantify the level of morphological variability in fish captured from 14 locations within three distinct subcatchments of a major river system. Western rainbowfish exhibited a range of morphologies, with variation in body depth accounting for a significant proportion (>42%) of the total variance in shape. Sexual dimorphism was also apparent, with males displaying deeper bodies than females. While the measured local habitat characteristics explained little of the observed morphological variation, fish displayed significant morphological differentiation at the level of the subcatchment. Local adaptation may partly explain the geographic patterns of body shape variation, but fine‐scale genetic studies are required to disentangle the effects of genetic differentiation from environmentally determined phenotypic plasticity in body shape. Developing a better understanding of environment–phenotype relationships in species from arid regions will provide important insights into ecological and evolutionary processes in these unique and understudied habitats.  相似文献   

5.
Geographic variation of morphology is an important topic of evolutionary biology, and research on geographic variation can provide insights on the formation, evolution, and adaptation of species and subspecies. The vertebrate skull is a developmentally and functionally complex morphological structure with multiple functions, that is susceptible to vary according to selection pressure. In this study, geographic variations in skull morphology of Batrachuperus karlschmidti from four different geographic populations(Shade, Gexi,Shangluokema, and Xinduqiao) were examined via geometric morphometrics. No significant differences were found among these populations with regard to skull size; however, significant variation was found in skull shape. The most notable shape changes are the relative sizes and positions of the frontal, maxilla,pterygoid, and vomer. Skull shape changes were not related to allometry. However, due to limitation of sample populations and size, the results of this study need to be further verified by more sample populations and individuals in the future. The results of this study contribute to our knowledge about these aspects of morphological variability in this species as well as in hynobiid salamanders.  相似文献   

6.
本文采用几何形态测量法对中国大蹄蝠9个不同地理种群头骨形态变化进行研究。结果表明,不同地理种群的头骨大小及形状存在显著差异,其中云南思茅种群与海南陵水种群差异最大。回归分析表明头骨形态的地理变化与气候因素相关。随着年均温度、年均湿度的升高以及年均降水量的增多,大蹄蝠头骨变小,上颌、齿、咬肌附着部分以及耳蜗部分的形状发生变化。此外,头骨大小与海拔高度呈正相关,头骨形状变化与纬度显著相关。本研究表明对栖息地生态条件的适应是中国大蹄蝠头骨形态地理变化的重要原因。  相似文献   

7.
Species with larger geographic distributions are more likely to encounter a greater variety of environmental conditions and barriers to gene flow than geographically‐restricted species. Thus, even closely‐related species with similar life‐history strategies might vary in degree and geographic structure of variation if they differ in geographic range size. In the present study, we investigated this using samples collected across the geographic ranges of eight species of fiddler crabs (Crustacea: Uca) from the Atlantic and Gulf coasts of North America. Morphological variation in the carapace was assessed using geometric morphometric analysis of 945 specimens. Although the eight Uca species exhibit different degrees of intraspecific variation, widespread species do not necessarily exhibit more intraspecific or geographic variation in carapace morphology. Instead, species with more intraspecific variation show stronger morphological divergence among populations. This morphological divergence is partly a result of allometric growth coupled with differences in maximum body size among populations. On average, 10% of total within‐species variation is attributable to allometry. Possible drivers of the remaining morphological differences among populations include gene flow mediated by ocean currents and plastic responses to various environmental stimuli, with isolation‐by‐distance playing a less important role. The results obtained indicate that morphological divergence among populations can occur over shorter distances than expected based on dispersal potential. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 248–270.  相似文献   

8.
Characterizing patterns of observed current variation, and testing hypotheses concerning the potential drivers of this variation, is fundamental to understanding how morphology evolves. Phylogenetic history, size and ecology are all central components driving the evolution of morphological variation, but only recently have methods become available to tease these aspects apart for particular body structures. Extant monitor lizards (Varanus) have radiated into an incredible range of habitats and display the largest body size range of any terrestrial vertebrate genus. Although their body morphology remains remarkably conservative, they have obvious head shape variation. We use two‐dimensional geometric morphometric techniques to characterize the patterns of dorsal head shape variation in 36 species (375 specimens) of varanid, and test how this variation relates to size, phylogenetic history and ecology as represented by habitat. Interspecific head shape disparity is strongly allometric. Once size effects are removed, principal component analysis shows that most shape variation relates to changes in the snout and head width. Size‐corrected head shape variation has strong phylogenetic signal at a broad level, but habitat use is predictive of shape disparity within phylogenetic lineages. Size often explains shape disparity among organisms; however, the ability to separate size and shape variation using geometric morphometrics has enabled the identification of phylogenetic history and habitat as additional key factors contributing to the evolution of head shape disparity among varanid lizards.  相似文献   

9.
Song Sparrow ( Melospiza melodia ) populations found along the Pacific Coast of North America, from Baja California to the islands off the coast of Alaska, exhibit extensive morphological variation. With a multivariate analysis of size and shape, I describe a portion of this pattern and examine how it could be maintained despite gene flow among the populations. Because shape differences fall along geographic barriers, I suggest that similarities among Song Sparrow populations in multivariate shape reflect their pattern of genetic relatedness. A general pattern of Song Sparrow post-nestling growth allometry has been discovered: bill characteristics are positively allometric and all other characteristics are negatively allometric. In contrast to shape, multivariate patterns of body size variation do not correspond to geographic relationships. In combination with evidence of Song Sparrow phenotypic plasticity, it is proposed that multivariate body size is an environmentally plastic trait and that specific traits exhibit levels of phenotypic plasticity in proportion to their rate of growth with respect to body size. In this way local environmental factors which alter body size may change an entire suite of allometrically related traits and thus create striking patterns of morphological variation.  相似文献   

10.
Subspecific variation is widespread in vertebrates. Within Africa, several mammals have extensive geographic distributions with attendant morphological, ecological, and behavioural variations, which are often used to demarcate subspecies. In the present study, we use a primate species, the vervet monkey, Cercopithecus aethiops, as a case study for intraspecific divergence in widespread mammals, assessed through hard tissue morphology. We examine intraspecific differences in size, shape, and non‐allometric shape from a taxonomic perspective, and discuss the macroevolutionary implications of findings from microevolutionary analyses of geographic variation. A geometric morphometric approach was used, employing 86 three‐dimensional landmarks of almost 300 provenanced crania. Many of the taxonomic differences in skull morphology between vervet populations appear to be related to geographic proximity, with subspecies at opposite extremes of a west‐to‐east axis showing greatest divergence, and populations from central and south Africa being somewhat intermediate. The classification rate from discriminant analyses was lower than that observed in other African primate radiations, including guenons as a whole and red colobus. Nonetheless, taxonomic differences in shape were significant and not simply related to either geography or size. Thus, although shifts in size may be an important first step in adaptation and diversification, with size responding more quickly than shape to environmental change, the six vervet taxa currently recognized (either as species or subspecies) are not simply allometrically scaled versions of one another and are probably best viewed as subspecies. Holding allometry constant when examining inter‐population differences in shape may thus help to reveal the early stages of evolutionary divergence. The vervet case study presented here hence has relevance for future studies examining intraspecific differentiation in other large mammals, particularly through the methods used to identify small but biologically meaningful divergence, with attendant implications for conservation planning. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 823–843.  相似文献   

11.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

12.
The dwarf gerbil (Gerbillus nanus) is broadly distributed in Asia, with a range that encompasses altitudinally diverse terrain, including two major mountain ranges. Previous studies have shown this species to be generally varied across its geographic range, both genetically and morphologically. Physical barriers (e.g. mountains) and geographic distance (i.e. isolation by distance [IBD]) are expected to reduce dispersal rates, and consequently could lead to cranial morphological differentiation among populations. Adaptation to local environments is also expected to lead to cranial morphological differentiation among populations. Here, I test these hypotheses by examining variation in cranial shape and size across the geographic distribution of G. nanus using geometric morphometric analysis. Based on a sample of 473 specimens from throughout its distribution, G. nanus populations do not seem to show biologically meaningful variation in cranial shape. Cranial size, on the other hand, did show geographic variation—yet, this variation does not seem to show strong patterns of IBD nor adaptation to local environments, which could indicate that the geographic variation in the cranial size of G. nanus populations may be accounted for by factors unexamined in this study.  相似文献   

13.
Phenotypic changes in the mammalian mandible can occur at different spatial and temporal scales. We investigated mandibular size and shape variation in three extant closely related dolphins (Cetacea, Odontoceti): Tursiops truncatus, Stenella coeruleoalba and Delphinus delphis in order to test the hypothesis that similar phenotypic changes occur across the same geographical gradient. Our data included 219 specimens representative of the following geographic locations: the Mediterranean Sea, the eastern north Atlantic and the North Sea. Each mandibula was photographed laterally and spatial positioning of eight homologous 2D landmarks was recorded. After applying generalised Procrustes analysis (GPA), intraspecific variation was first investigated between sexes and among populations to allow further pooling of samples. Size and shape differences among populations and species were investigated through multivariate ordination techniques (PCA), Procrustes ANOVA and allometric analyses. In all three species, Mediterranean populations clearly differed in mandible shape from the extra-Mediterranean ones. Among the three, the direction of geographic phenotypic changes was significantly similar in the striped and common dolphin, while the bottlenose dolphin was the most divergent species, differing both in size and allometric trajectory. Shape variation of the two former species highlighted a morphological convergence in the Atlantic, and a phenotypic divergence in the Mediterranean. Shape differences among the three dolphin species were interpreted in the light of different prey preferences, feeding strategies and habitat partitioning to avoid direct competition.  相似文献   

14.
Geographical patterns in morphology can be the result of divergence among populations due to neutral or selective changes and/or phenotypic plasticity in response to different environments. Marine gastropods are ideal subjects on which to explore these patterns, by virtue of the remarkable intraspecific variation in life‐history traits and morphology often observed across relatively small spatial scales. The ubiquitous N‐Atlantic common whelk (Buccinum undatum) is well known for spatial variation in life‐history traits and morphology. Previous studies on genetic population structure have revealed that it exhibits significant differentiation across geographic distances. Within Breiðafjörður Bay, a large and shallow bay in W‐Iceland, genetic differentiation was demonstrated between whelks from sites separated by just 20 km. Here, we extended our previous studies on the common whelk in Breiðafjörður Bay by quantifying phenotypic variation in shell morphology and color throughout the Bay. We sought to test whether trait differentiation is dependent on geographic distance and/or environmental variability. Whelk in Breiðafjörður Bay displayed fine‐scale patterns of spatial variation in shape, thickness, and color diversity. Differentiation increased with increasing distance between populations, indicating that population connectivity is limited. Both shape and color varied along a gradient from the inner part of the bay in the east to the outer part in the west. Whelk shells in the innermost part of Breiðafjörður Bay were thick with an elongate shell, round aperture, and low color diversity, whereas in the outer part of the bay the shells were thinner, rounder, with a more elongate aperture and richer color diversity. Significant site‐specific difference in shell traits of the common whelk in correlation with environmental variables indicates the presence of local ecotypes and limited demographic connectivity.  相似文献   

15.
Populations of annual killifish of the genus Nothobranchius occur in patchily distributed temporary pools in the East African savannah. Their fragmented distribution and low dispersal ability result in highly structured genetic clustering of their populations. In this study, we examined body shape variation in a widely distributed species, Nothobranchius orthonotus with known phylogeographic structure. We tested whether genetic divergence of major mitochondrial lineages forming two candidate species is congruent with phenotypic diversification, using linear and geometric morphometry analyses of body shape in 23 wild populations. We also conducted a common‐garden experiment with two wild‐derived populations to control for the effect of local environmental conditions on body shape. We identified different allometric trajectories for different mitochondrial lineages and candidate species in both sexes. However, in a principal components analysis of population‐level body shape, the separation among mitochondrial lineages was incomplete. Higher similarity of mitochondrial lineages belonging to different candidate species than that of same candidate species prevented distinction of the two candidate species on the basis of body shape. Analysis at the individual level demonstrated that N. orthonotus express high intrapopulation variability, with major overlap among individuals from all populations. In conclusion, we suggest that N. orthonotus be considered as a single species with an extensive geographic range, strong population genetic structure and high morphological variability.  相似文献   

16.
Deciphering the mechanisms that underlie morphological and functional diversity is essential for understanding how organisms adapt to their environment. Interestingly, phenotypic divergence does not necessarily correspond to the geographic and genetic separation between populations. Here, we explored the morphological and functional divergence among populations of two genetically differentiated clades of the Moorish gecko, Tarentola mauritanica. We used linear and geometric morphometrics to quantify morphological variation and investigated how it translates into biting and CLIMBING PERFORMANCE, to better understand the mechanisms potentially underlying population and lineage divergence. We found marked morphological differences between clades, both in body size and head shape. However, much of this differentiation is more strongly related to local variation between populations of the same clade, suggesting that recent ecological events may be more influential than deep evolutionary history in shaping diversity patterns in this group. Despite a lack of association between morphology and functional diversification in the locomotor system of the Moorish gecko, straightforward links are observed between head morphology and biting performance, providing more hints on the possible underlying causes. Indeed, variation in bite force is mostly determined by size variation and sexual dimorphism, and differences between the two clades concern how sexual variation is expressed, reinforcing the idea that both social and ecological factors contribute in shaping differentiation. Interestingly, the individuals from the islets off the coast of Murcia exhibit particular morphological and functional traits, which suggests that the ecological conditions related to insularity may drive the phenotypic differentiation of this population.  相似文献   

17.
We compared the proportion of morphological variation accounted for by subspecies categories with the proportion encompassed by ecologically based categories in cutthroat trout ( Oncorhynchus clarkii ssp.), as a means of assessing the relative importance of each approach in identifying intraspecific diversity. We used linear and geometric morphometrics to compare measures of body shape, fin length, and head features between and within subspecies of cutthroat trout. Both categories accounted for a significant proportion of the variation between and within the subspecies; however, the larger proportion was explained by subspecific differences, with the greatest morphological divergence between coastal cutthroat trout ( Oncorhynchus clarkii clarkii ) and interior subspecies. Ecotypic categories within each subspecies also explained significant morphological differences: stream populations had longer fins and deeper, more robust bodies than lake populations. The largest ecotypic differences occurred between stream and lake populations of Yellowstone cutthroat trout ( Oncorhynchus clarkii bouvieri ). Given that many cutthroat trout subspecies are of conservation concern, our study offers a better understanding of intraspecific variation existing within the species, providing precautionary evidence of incipient speciation, and a framework of describing phenotypic diversity that is correlated with ecological conditions.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 266–281.  相似文献   

18.
Recent studies have interpreted intraspecific divergence in relative head sizes in snakes as evidence for adaptation of the trophic apparatus in gape-limited predators to local prey size. However, such variation might also arise from non-adaptive processes (such as allometry, correlated response, genetic drift, or non-adaptive phenotypic plasticity). We test predictions from these alternative hypotheses using data on the allometric relationship between head size and body size in two wide-ranging snake species: eight populations of adders ( Vipera berus ) and 30 populations of common gartersnakes ( Thamnophis sirtalis ). Our data enable strong rejection of the alternative (non-adaptive) hypotheses, because the relationship between head and body size differed significantly among populations, the geographic distance separating pairs of populations explained less than 1.5% of their divergence in allometric coefficients, and the within-population allometric coefficients were higher than the among-population coefficients in each species. In addition, the geographical variability of allometric coefficients in females did not parallel that in males, suggesting that allometric coefficients have evolved independently in the two sexes. Phenotypic plasticity also cannot explain the data, because laboratory studies show that the allometric relationship between head size and body size is relatively insensitive to differing growth rates. We conclude that the intraspecific head size divergence in these snakes is better explained by spatially heterogeneous selection to optimize prey handling ability, than by non-adaptive processes.  相似文献   

19.
The existence of cryptic species in the midday jird (Meriones meridianus) has been suggested in literature, although based on little empirical data to support this hypothesis. In this study, a two‐dimensional landmark‐based geometric morphometric approach was used to investigate whether patterns in intraspecific variation in skull shape and size exist, using 110 skull specimens from more than 20 different localities along the distribution range of M. meridianus. This is the first study of morphological differences on such a big sample size and geographical range, and it tries to find whether skull shape variation in this species is best described as being clinal or rather reflecting cryptic diversity. The latter seems to be the case, as a dimorphic skull phenotype was found, reflecting a geographic disparity between the Middle East and the Far East specimens both in shape and in size. Distinct cranial differences were found in the overall cranial size and, also at the level of the inflation of the bulla, the elongation of the nasal, the length of the teeth row and the incisive foramen, as well as the distance in between the latter two. It thus seems that M. meridianus from Middle East is morphologically distinct from that of the Far East. Furthermore, our results also demonstrate that clinal variation could explain variation within Middle East populations, whereas a more heterogenous pattern is found for those of the Far East. The hypothesis that the observed phenotypic variation may reflect cryptic species is discussed, with the recommendation for a thorough taxonomical revision of the genus in the region.  相似文献   

20.
Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry—the relationship between skull shape and size during growth—can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号