首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In many marine invertebrates, long‐distance dispersal is achieved during an extended pelagic larval phase. Although such dispersal should result in high gene flow over broad spatial scales, fine‐scale genetic structure has often been reported, a pattern attributed to interfamilial variance in reproductive success and limited homogenization during dispersal. To examine this hypothesis, the genetic diversity of dispersing larvae must be compared with the postdispersal stages, that is benthic recruits and adults. Such data remain, however, scarce due to the difficulty to sample and analyse larvae of minute size. Here, we carried out such an investigation using the marine gastropod Crepidula fornicata. Field sampling of three to four larval pools was conducted over the reproductive season and repeated over 3 years. The genetic composition of larval pools, obtained with 16 microsatellite loci, was compared with that of recruits and adults sampled from the same site and years. In contrast to samples of juveniles and adults, large genetic temporal variations between larval pools produced at different times of the same reproductive season were observed. In addition, full‐ and half‐sibs were detected in early larvae and postdispersal juveniles, pointing to correlated dispersal paths between several pairs of individuals. Inbred larvae were also identified. Such collective larval dispersal was unexpected given the long larval duration of the study species. Our results suggest that each larval pool is produced by a small effective number of reproducers but that, over a reproductive season, the whole larval pool is produced by large numbers of reproducers across space and time.  相似文献   

2.
Mortality that occurs during larval dispersal as a consequence of environmental, maternal, and genetic effects and their interactions can affect annual recruitment in fish populations. We studied larval lake sturgeon (Acipenser fulvescens) drift for two consecutive nights to examine whether larvae from different females exposed to the same environmental conditions during dispersal differed in relative levels of mortality. We estimated proportional contributions of females to larval collections and relative larval loss among females as larvae dispersed downstream between two sampling sites based on genetically determined parentage. Larval collections were composed of unequal proportions of offspring from different females that spawned at upstream and downstream locations (~0.8 km apart). Hourly dispersal patterns of larvae produced from females spawning at both locations were similar, with the largest number of larvae observed during 22:00–23:00 h. Estimated relative larval loss did not differ significantly among females as larvae were sampled at two sites approximately 0.15 and 1.5 km from the last section downstream of spawning locations. High inter- and intra-female variation in larval contributions and relative larval loss between nights may be a common feature of lake sturgeon and other migratory fish species, and likely is a source of inter-annual and intra-annual variation in fish recruitment.  相似文献   

3.
Dispersal is an important early life history process that influences fish population dynamics and recruitment. We studied larval sea lamprey (Petromyzon marinus) dispersal by combining spatially explicit field sampling, genetic methods, and laboratory experiments to investigate how far sea lamprey larvae can disperse away from nests during their first growing season; subsequent dispersal by age 1 of sea lamprey; and the effect of density on larval dispersal. In two study streams sea lamprey larvae were observed to have moved >150 m downstream from the most likely source nest within 2–3 weeks of hatching. Conversely, randomization trials suggested that for both streams age 0 larvae were found closer to full siblings than would be expected if dispersal was not constrained by distance. Restricted dispersal was also observed for age 1 larvae in five streams, although for this age class full siblings were more commonly found to be separated by >1,000 m. Laboratory experiments indicated a significant effect of density on the movement of larval sea lamprey, with more larval movement at higher densities. Temperature also affected movement significantly, with reduced larval movements at cooler temperatures. Our findings suggest that larval sea lamprey dispersal is sufficient to minimize the likelihood of strong density-dependent effects on recruitment, even with large population sizes.  相似文献   

4.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   

5.
Many marine organisms can be transported hundreds of kilometres during their pelagic larval stage, yet little is known about spatial and temporal patterns of larval dispersal. Although traditional population‐genetic tools can be applied to infer movement of larvae on an evolutionary timescale, large effective population sizes and high rates of gene flow present serious challenges to documenting dispersal patterns over shorter, ecologically relevant, timescales. Here, we address these challenges by combining direct parentage analysis and indirect genetic analyses over a 4‐year period to document spatial and temporal patterns of larval dispersal in a common coral‐reef fish: the bicolour damselfish (Stegastes partitus). At four island locations surrounding Exuma Sound, Bahamas, including a long‐established marine reserve, we collected 3278 individuals and genotyped them at 10 microsatellite loci. Using Bayesian parentage analysis, we identified eight parent‐offspring pairs, thereby directly documenting dispersal distances ranging from 0 km (i.e., self‐recruitment) to 129 km (i.e., larval connectivity). Despite documenting substantial dispersal and gene flow between islands, we observed more self‐recruitment events than expected if the larvae were drawn from a common, well‐mixed pool (i.e., a completely open population). Additionally, we detected both spatial and temporal variation in signatures of sweepstakes and Wahlund effects. The high variance in reproductive success (i.e., ‘sweepstakes’) we observed may be influenced by seasonal mesoscale gyres present in the Exuma Sound, which play a prominent role in shaping local oceanographic patterns. This study documents the complex nature of larval dispersal in a coral‐reef fish, and highlights the importance of sampling multiple cohorts and coupling both direct and indirect genetic methods in order disentangle patterns of dispersal, gene flow and variable reproductive success.  相似文献   

6.
Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free‐living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a coancestry model and individual‐based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio‐temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage.  相似文献   

7.
We combine kinship estimates with traditional F‐statistics to explain contemporary drivers of population genetic differentiation despite high gene flow. We investigate range‐wide population genetic structure of the California spiny (or red rock) lobster (Panulirus interruptus) and find slight, but significant global population differentiation in mtDNA (ΦST = 0.006, = 0.001; Dest_Chao = 0.025) and seven nuclear microsatellites (FST = 0.004, < 0.001; Dest_Chao = 0.03), despite the species’ 240‐ to 330‐day pelagic larval duration. Significant population structure does not correlate with distance between sampling locations, and pairwise FST between adjacent sites often exceeds that among geographically distant locations. This result would typically be interpreted as unexplainable, chaotic genetic patchiness. However, kinship levels differ significantly among sites (pseudo‐F16,988 = 1.39, = 0.001), and ten of 17 sample sites have significantly greater numbers of kin than expected by chance (< 0.05). Moreover, a higher proportion of kin within sites strongly correlates with greater genetic differentiation among sites (Dest_Chao, R2 = 0.66, < 0.005). Sites with elevated mean kinship were geographically proximate to regions of high upwelling intensity (R2 = 0.41, = 0.0009). These results indicate that P. interruptus does not maintain a single homogenous population, despite extreme dispersal potential. Instead, these lobsters appear to either have substantial localized recruitment or maintain planktonic larval cohesiveness whereby siblings more likely settle together than disperse across sites. More broadly, our results contribute to a growing number of studies showing that low FST and high family structure across populations can coexist, illuminating the foundations of cryptic genetic patterns and the nature of marine dispersal.  相似文献   

8.
Connectivity, the demographic linking of local populations through the dispersal of individuals, is one of the most poorly understood processes in population dynamics, yet has profound implications for conservation and harvest strategies. For marine species with pelagic larvae, direct estimation of connectivity remains logistically challenging and has mostly been limited to single snapshots in time. Here, we document seasonal and interannual patterns of larval dispersal in a metapopulation of the coral reef fish Amphiprion polymnus. A 3‐year record of larval trajectories within and among nine discrete local populations from an area of approximately 35 km was established by determining the natal origin of settled juveniles through DNA parentage analysis. We found that spatial patterns of both self‐recruitment and connectivity were remarkably consistent over time, with a low level of self‐recruitment at the scale of individual sites. Connectivity among sites was common and multidirectional in all years and was not significantly influenced by seasonal variability of predominant surface current directions. However, approximately 75% of the sampled juveniles could not be assigned to parents within the study area, indicating high levels of immigrations from sources outside the study area. The data support predictions that the magnitude and temporal stability of larval connectivity decreases significantly with increasing distance between subpopulations, but increases with the size of subpopulations. Given the considerable effort needed to directly measure larval exchange, the consistent patterns suggest snapshot parentage analyses can provide useful dispersal estimates to inform spatial management decisions.  相似文献   

9.
The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no‐take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well‐connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582–993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long‐term persistence.  相似文献   

10.
Dispersal sets the fundamental scales of ecological and evolutionary dynamics and has important implications for population persistence. Patterns of marine dispersal remain poorly understood, partly because dispersal may vary through time and often homogenizes allele frequencies. However, combining multiple types of natural tags can provide more precise dispersal estimates, and biological collections can help to reconstruct dispersal patterns through time. We used single nucleotide polymorphism genotypes and otolith core microchemistry from archived collections of larval summer flounder (Paralichthys dentatus, n = 411) captured between 1989 and 2012 at five locations along the US East coast to reconstruct dispersal patterns through time. Neither genotypes nor otolith microchemistry alone were sufficient to identify the source of larval fish. However, microchemistry identified clusters of larvae (n = 3–33 larvae per cluster) that originated in the same location, and genetic assignment of clusters could be made with substantially more confidence. We found that most larvae probably originated near a biogeographical break (Cape Hatteras) and that larvae were transported in both directions across this break. Larval sources did not shift north through time, despite the northward shift of adult populations in recent decades. Our novel approach demonstrates that summer flounder dispersal is widespread throughout their range, on both intra‐ and intergenerational timescales, and may be a particularly important process for synchronizing population dynamics and maintaining genetic diversity during an era of rapid environmental change. Broadly, our results reveal the value of archived collections and of combining multiple natural tags to understand the magnitude and directionality of dispersal in species with extensive gene flow.  相似文献   

11.
Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small‐scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self‐recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects.  相似文献   

12.
Studying population structure and genetic diversity at fine spatial scales is key for a better understanding of demographic processes that influence population connectivity. This is particularly important in marine benthic organisms that rely on larval dispersal to maintain connectivity among populations. Here, we report the results of a genetic survey of the ascidian Pyura chilensis from three localities along the southeastern Pacific. This study follows up on a previous report that described a genetic break in this region among localities only 20 km apart. By implementing a hierarchical sampling design at four spatial levels and using ten polymorphic microsatellite markers, we test whether differences in fine‐scale population structure explain the previously reported genetic break. We compared genetic spatial autocorrelations, as well as kinship and relatedness distributions within and among localities adjacent to the genetic break. We found no evidence of significant autocorrelation at the scale up to 50 m despite the low dispersal potential of P. chilensis that has been reported in the literature. We also found that the proportion of related individuals in close proximity (<1 km) was higher than the proportion of related individuals further apart. These results were consistent in the three localities. Our results suggest that the spatial distribution of related individuals can be nonrandom at small spatial scales and suggests that dispersal might be occasionally limited in this species or that larval cohorts can disperse in the plankton as clustered groups. Overall, this study sheds light on new aspects of the life of this ascidian as well as confirms the presence of a genetic break at 39°S latitude. Also, our data indicate there is not enough evidence to confirm that this genetic break can be explained by differences in fine‐scale genetic patterns among localities.  相似文献   

13.

Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  相似文献   

14.
Characterizing patterns of larval dispersal is essential to understanding the ecological and evolutionary dynamics of marine metapopulations. Recent research has measured local dispersal within populations, but the development of marine dispersal kernels from empirical data remains a challenge. We propose a framework to move beyond point estimates of dispersal towards the approximation of a simple dispersal kernel, based on the hypothesis that the structure of the seascape is a primary predictor of realized dispersal patterns. Using the coral reef fish Elacatinus lori as a study organism, we use genetic parentage analysis to estimate self‐recruitment at a small spatial scale (<1 km). Next, we determine which simple kernel explains the observed self‐recruitment, given the influx of larvae from reef habitat patches in the seascape at a large spatial scale (up to 35 km). Finally, we complete parentage analyses at six additional sites to test for export from the focal site and compare these observed dispersal data within the metapopulation to the predicted dispersal kernel. We find 4.6% self‐recruitment (CI95%: ±3.0%) in the focal population, which is explained by the exponential kernel y = 0.915x (CI95%: y = 0.865x, y = 0.965x), given the seascape. Additional parentage analyses showed low levels of export to nearby sites, and the best‐fit line through the observed dispersal proportions also revealed a declining function y = 0.77x. This study lends direct support to the hypothesis that the probability of larval dispersal declines rapidly with distance in Atlantic gobies in continuously distributed habitat, just as it does in the Indo‐Pacific damselfishes in patchily distributed habitat.  相似文献   

15.
Lake sturgeon Acipenser fulvescens spawn at the base of Kakabeka Falls, a 39 m waterfall on the Kaministiquia River, a tributary to Lake Superior. Access to this historical spawning site can be restricted or delayed due to hydroelectric flow fluctuations that coincide with the A. fulvescens spawning season. The objectives of this study were to determine (a) the necessary flow conditions that facilitate spawning site access; (b) quantity and duration of flow required for successful spawning and dispersal of larvae; and (c) evaluate recruitment of juvenile A. fulvescens in relation to flow. A. fulvescens spawning migrations were tracked using a stationary telemetry receiver that logged the movements of 166 A. fulvescens fitted with radio-transmitters. Unrestricted access to the spawning site was facilitated when spawning flow was controlled at 23 m3 s−1 in 2004 and 17 m3 s−1 in 2006. Fluctuating (0.5–8.5 m3 s−1) and delayed spawning flows resulted in restricted and delayed access to the spawning site. Flow duration for successful egg incubation, hatch and larval dispersal was determined by sampling larvae using drift nets and quantified using cumulative temperature units (CTU). Over 10 years, 10,083 larvae were captured between 31 May and 20 July with 97% of the drift occurring prior to 30 June. From the date of first spawning to the end of larval dispersal took an average of 38.6 days, and the mean CTU value was 398.6. In general, a minimum flow of approximately 14.5 m3 s−1 from the date of initial spawning to the accumulation of c. 400 CTU ensured successful hatch and larval dispersal. During the timeframe of this study, recruitment was variable. This study described the complex and variable reproductive life history of A. fulvescens and defined spawning flow requirements ecologically, which can be used to develop operational provisions at hydropower facilities to ensure successful reproduction.  相似文献   

16.
Fly larvae can be used effectively to reduce various organic waste types and produce value-added products, including protein as an ingredient in livestock feeds and oil for biodiesel production. However, fly development on different waste types may cause differences in growth rate and the body composition, which can further be influenced by fly species and their stocking rate. This study explored the impact of different waste types (kitchen waste, abattoir waste and swine manure) and larval stocking rate on growth and body composition of four blowfly species, Chrysomya chloropyga (Wiedemann), Chrysomya megacephala (Fabricius), Chrysomya putoria (Wiedemann) and Lucilia sericata (Meigen). First-instar larvae (20, 50 or 100), less than 3 hr old, were placed on 100 g of each waste type. Pre-pupal mass at commencement of post-feeding larval dispersal, time to onset of dispersal, survival and nutrient reserves were determined for each species, stocking rate and waste type. Our results revealed that larvae fed kitchen and abattoir waste had significantly higher dry mass, crude protein and lipid content compared with those fed swine manure. Higher survival rate was observed with increasing larval stocking rate. We provide important information to guide the mass production of high-quality nutrient-rich larvae and recommend C. putoria, which is versatile and effective on a range of waste products, as well as high in protein and lipids. The implications for waste management are discussed.  相似文献   

17.
Overexploitation of marine species invariably results in population decline but can also have indirect effects on ecological processes such as larval dispersal and recruitment that ultimately affect genetic diversity and population resilience. We compared microsatellite DNA variation among depleted and healthy populations of the black-lip abalone Haliotis rubra from Tasmania, Australia, to determine if over-fishing had affected genetic diversity. We also used genetic data to assess whether variation in the scale and frequency of larval dispersal was linked to greater population decline in some regions than in others, and if larval dispersal was sufficient to facilitate natural recovery of depleted populations. Surprisingly, allelic diversity was higher in depleted populations than in healthy populations ( P <  0.05). Significant subdivision across hundreds of metres among our sampling sites ( F ST = 0.026, P  < 0.01), coupled with assignment tests, indicated that larval dispersal is restricted in all regions studied, and that abalone populations across Tasmania are largely self-recruiting. Low levels of larval exchange appear to occur at the meso-scale (7–20 km), but age estimates based on shell size indicated that successful migration of larvae between any two sites may happen only once every few years. We suggest that genetic diversity may be higher in depleted populations due to the higher relative ratio of migrant to self-recruiting larvae. In addition, we expect that recovery of depleted abalone populations will be reliant on sources of larvae at the meso-scale (tens of km), but that natural recovery is only likely to occur on a timescale unacceptable to fishers and resource managers.  相似文献   

18.
Ecological aspects of recruitment in the amphidromous goby, Sicyopterus japonicus, were studied from larval collections made with a set net in the estuary of the Ota River, Wakayama, Japan. The abundance patterns of the 12,766 larvae collected from 18 April to 26 August 2006 showed several peaks during the recruitment season. Their body sizes at recruitment ranged from 23.5 to 30.0 mm standard length (mean ± SD, 26.3 ± 1.1 mm), 0.11 to 0.49 g body weight (0.22 ± 0.05 g), and 8 to 20 condition factor (11 ± 2). The standard length of the goby larvae tended to decrease with the season, while their body weight slightly increased and resulted in an increase in condition factor. The recruitment of larvae occurred mainly during the daytime. Otolith growth increment analysis of 30 larvae collected by a square lift net on 30 April 2005 revealed that the oceanic larval duration after downstream migration ranged from 173 to 253 days (208 ± 22) after hatching. A limited time of recruitment in early summer and a considerably long duration of oceanic life (about a half year) appeared to be unique characteristics of this Sicyopterus species that lives in a temperate region in comparison to other tropical species of the genus Sicyopterus that all have year-round recruitment.  相似文献   

19.
Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence‐based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual‐based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self‐recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self‐recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds.  相似文献   

20.
1. For a wide range of organisms, heritable variation in life-history characteristics has been shown to be strongly subject to selection, reflecting the impact that variation in characters such as genotypic diversity, duration of larval development and adaptations for dispersal can have on the fitness of offspring and the make-up of populations. Indeed, variation in life-history characteristics, especially reproduction and larval type, have often been used to predict patterns of dispersal and resultant population structures in marine invertebrates. 2. Scleractinian corals are excellent models with which to test this relationship, as they exhibit almost every possible combination of reproductive mode and larval type. Some general patterns are emerging but, contrary to expectations, genetic data suggest that while populations of broadcast spawning species may be genotypically diverse they may be heavily reliant on localized recruitment rather than widespread dispersal of larvae. 3. Here we use microsatellites to test the importance of localized recruitment by comparing the genetic structure of populations of two broadcast spawning corals with contrasting modes of reproduction and larval development; Goniastrea favulus is self-compatible, has sticky, negatively buoyant eggs and larvae and is expected to have restricted dispersal of gametes and larvae. In contrast, Platygyra daedalea is self-incompatibile, spawns positively buoyant egg-sperm bundles and has planktonic development. 4. Surprisingly, spatial-autocorrelation revealed no fine-scale clustering of similar genotypes within sites for G. favulus, but showed a non-random distribution of genotypes in P. daedalea. Both species showed similar levels of genetic subdivision among sites separated by 50-100 m (F(ST) = 0.03), suggesting that larval dispersal may be equivalent in both species. 5. Interestingly, as fragmentation has been considered rare in massive corals, our sample of 284 P. daedalea colonies included 28 replicated genotypes that were each unlikely (P < 0.05) to have been derived independently from sexual reproduction. 6. We conclude that the extreme life history of G. favulus does not produce unusually fine-scale genetic structure and subsequently, that reproductive mode and larval type may not be not good predictors of population structure or dispersal ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号