首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endo‐β‐1,3‐1,4‐glucanases are glycoside hydrolases involved in the enzymatic depolymerization of 1,3‐1,4 β‐glucans and showed an antifungal activity against some fungi. Bacillus amyloliquefaciensBLB369 has a high antagonistic activity against phytopathogenic fungi. Its glu369 full‐coding sequence of the endo‐β‐1,3‐1,4‐glucanase gene (732 bp) was sequenced, cloned and successfully expressed in Escherichia coli Top10. The encoded protein (243 amino acids) has a calculated molecular mass of 27.3 kDa. To simplify the purification procedure, the glu369 coding sequence was cloned into the vector pKJD4. The produced OmpA‐His‐Glu369 harboured OmpA signal sequence for E. coli periplasmic localization and followed by a 6His residues for its purification. The purified His‐tagged proteins revealed two bands on SDS‐PAGE analysis with molecular masses of about 30.5 (His‐Glu369) and 32.5 kDa (OmpA‐His‐Glu369). They had the ability to inhibit the growth of phytopathogenic fungus Alternaria alternata. These favourable properties make the endo‐β‐1,3‐1,4‐glucanase a good candidate for biotechnological applications.  相似文献   

2.
The salophen copper(II) complex was successfully used for the efficient synthesis of new 1,2,3‐triazoles based on the naphthalene‐1,4‐dione scaffold. The reaction of 2‐chloro‐3‐(prop‐2‐yn‐1‐yloxy)naphthalene‐1,4‐dione or 2,3‐bis(prop‐2‐yn‐1‐yloxy)naphthalene‐1,4‐dione with aromatic azides in the presence of a low copper catalyst (loading 1 mol‐%) afforded 2‐chloro‐3‐[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methoxy]naphthalene‐1,4‐dione or 2,3‐bis[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methoxy]naphthalene‐1,4‐dione, respectively. The advantages of these reactions are short reaction times, high‐to‐excellent reaction yields, operational simplicity, and mild experimental conditions. The new 1,2,3‐triazoles obtained were screened for their in vitro antibacterial activities and were subjected to molecular docking studies.  相似文献   

3.
Epilepsy, one of the most frequent neurological disorders, is still insufficiently treated in about 30% of patients. As a consequence, identification of novel anticonvulsant agents is an important issue in medicinal chemistry. In the present article we report synthesis, physicochemical, and pharmacological evaluation of N‐trans‐cinnamoyl derivatives of R and S‐2‐aminopropan‐1‐ol, as well as R and S‐2‐aminobutan‐1‐ol. The structures were confirmed by spectroscopy and for derivatives of 2‐aminopropan‐1‐ols the configuration was evaluated by means of crystallography. The investigated compounds were tested in rodent models of seizures: maximal electroshock (MES) and subcutaneous pentetrazol test (scPTZ), and also in a rodent model of epileptogenesis: pilocarpine‐induced status prevention. Additionally, derivatives of 2‐aminopropan‐1‐ols were tested in benzodiazepine‐resistant electrographic status epilepticus rat model as well as in vitro for inhibition of isoenzymes of cytochrome P450. All of the tested compounds showed promising anticonvulsant activity in MES. For R(–)‐(2E)‐N‐(1‐hydroxypropan‐2‐yl)‐3‐phenylprop‐2‐enamide pharmacological parameters were found as follows: ED50 = 76.7 (68.2–81.3) mg/kg (MES, mice i.p., time = 0.5 h), ED50 = 127.2 (102.1–157.9) mg/kg (scPTZ, mice i.p., time = 0.25 h), TD50 = 208.3 (151.4–230.6) mg/kg (rotarod, mice i.p., time = 0.25 h). Evaluation in pilocarpine status prevention proved that all of the reported compounds reduced spontaneous seizure activity and act as antiepileptogenic agents. Both enantiomers of 2‐aminopropan‐1‐ols did not influence cytochrome P450 isoenzymes activity in vitro and are likely not to interact with CYP substrates in vivo. Chirality 28:482–488, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
In this study the interaction mechanism between newly synthesized 4‐(3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2, 3‐dihydro‐1,3,4‐thiadiazole‐2‐yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide‐ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide‐ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated.  相似文献   

5.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

6.
A series of novel phenylurea containing 2‐benzoylindan‐1‐one derivatives 3a  –  3j were synthesized from the reaction of phenylurea‐substituted acetophenones 1a  –  1j with phthalaldehyde 2 under mild reaction conditions in good yields. All synthesized compounds were characterized by spectroscopic methods. The obtained compounds ( 3a  –  3j ) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay, 3f and 3g were found to be most active compounds. The compounds were also screened for antimicrobial activity and all compounds showed remarkable activity against used microorganisms.  相似文献   

7.
8.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) is an enzyme that affects the body's cortisol levels. The inhibition of its activity can be used in the treatment of Cushing's syndrome, metabolic syndrome and type 2 diabetes. In this study, we synthesized new derivatives of 2‐(methylamino)thiazol‐4(5H)‐one and tested their activity towards inhibition of 11β‐HSD1 and its isoform – 11β‐HSD2. The results were compared with the previously tested allyl derivatives. We found out that methyl derivatives are weaker inhibitors of 11β‐HSD1 in comparison to their allyl analogs. Due to significant differences in the activity of the compounds, molecular modeling was performed, which was aimed at comparing the interactions between 11β‐HSD1 and ligands differing by substituent at the amine group (allyl vs. methyl). Modeling showed that the absence of the allyl group can lead to the rotation of whole ligand molecule which affects its interaction with the enzyme.  相似文献   

9.
In continuation of our previous research on the development of novel pyrazole‐4‐carboxamide with potential antifungal activity, compound SCU2028 , namely N‐[2‐[(3‐chlorophenyl)amino]phenyl]‐3‐(difluoromethyl)‐1‐methyl‐1H‐pyrazole‐4‐carboxamide, was synthesized by new method, structurally characterized by IR, HR‐ESI‐MS, 1H‐ and 13C‐NMR spectra and further identified by single‐crystal X‐ray diffraction. In pot tests, compound SCU2028 showed good in vivo antifungal activity against Rhizoctonia solani (R. solani) and IC50 value of it was 7.48 mg L?1. In field trials, control efficacy of compound SCU2028 at 200 g.a.i. ha?1 was 42.30 % on the 7th day after the first spraying and 68.10 % on the 14th day after the second spraying, only slightly lower than that of thifluzamide (57.20 % and 71.40 %, respectively). Further in vitro inhibitory activity showed inhibitory ability of compound SCU2028 was 45‐fold higher than that of bixafen and molecular docking of compound SCU2028 to SDH predicted its binding orientation in the active site of the target protein SDH. These results suggested that compound SCU2028 was a potential fungicide for control of rice sheath blight.  相似文献   

10.
Tyrosinase is a type 3 copper enzyme responsible for skin pigmentation disorders, skin cancer, and enzymatic browning of vegetables and fruits. In the present article, 12 small molecules of 2‐benzylidenehydrazine‐1‐carbothioamide were designed, synthesized and evaluated for their anti‐tyrosinase activities followed by molecular docking and pharmacophore‐based screening. Among synthesized thiosemicarbazone derivatives, one compound, (2E)‐2‐[(4‐nitrophenyl)methylidene]hydrazine‐1‐carbothioamide, is the strongest inhibitor of mushroom tyrosinase with IC50 of 0.05 μM which demonstrated a 128‐fold increase in potency compared to the positive control. Kinetic studies also revealed mix type inhibition by this compound. Docking studies confirmed the complete fitting of the synthesized compounds into the tyrosinase active site. The results underline the potential of 2‐benzylidenehydrazine‐1‐carbothioamides as potent pharmacophore to extend the tyrosinase inhibition in drug discovery.  相似文献   

11.
12.
13.
A series of tetrahydropyrimidine derivatives ( 2a – 2l ) were designed, synthesized, and screened for anti‐HIV‐1 properties based on the structures of HIV‐1 gp41 binding site inhibitors, NB ‐2 and NB ‐64 . A computational study was performed to predict the pharmacodynamics, pharmacokinetics, and drug‐likeness features of the studied molecules. Docking studies revealed that the carboxylic acid group in the molecules forms salt bridges with either Lys574 or Arg579. Physiochemical properties (e.g., molecular weight, number of hydrogen bond donors, number of hydrogen bond acceptors, and number of rotatable bonds) of the synthesized compounds confirmed and exhibited that these compounds were within the range set by Lipinski's rule of five. Compounds 2e and 2k with 4‐chlorophenyl substituent and 4‐methylphenyl group at C(4) position of the tetrahydropyrimidine ring was the most potent one among the tested compounds. This suggests that these compounds may serve as leads for development of novel small‐molecule HIV‐1 inhibitors.  相似文献   

14.
New N‐substituted‐2‐amino‐4,5,6,7‐tetrahydrothieno[2,3‐c]pyridine derivatives were synthesized employing a convenient one‐pot three‐component method and their structures were characterized by 1H‐NMR and single crystal X‐ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram‐positive (Sarcina lutea) and Gram‐negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram‐positive bacteria and the (R)‐enantiomers displayed a greater antimicrobial potency than their (S)‐counterparts. The structure–activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.  相似文献   

15.
A series of novel alkyl substituted purines were synthesized. 6‐[4‐(4‐Propoxyphenyl)piperazin‐1‐yl]‐9H‐purine was used as the key starting material, which was synthesized via a multistep protocol and finally subjected for N‐alkylation with various alkyl halides with an aim to get prospective antimicrobial agents. The structures of the novel compounds were established by substantiating them through spectral techniques like 1H‐NMR, 13C‐NMR, FT‐IR and EI‐MS. They were explored for antitubercular activity against Mycobacterium tuberculosis H37RV. Furthermore, they were checked for their antimicrobial activity concerning bacterial and fungal strains. The title compounds exhibited considerable antimicrobial activity without any significant toxicity. In silico studies depicted their good binding profile against Mycobacterium tuberculosis enoyl reductase (InhA; PDB ID: 4TZK) and Candida albicans dihydrofolate reductase (PDB ID: 1AI9). The title compounds obeyed Lipinski's parameters and have exhibited good drug‐like properties.  相似文献   

16.
A series of novel α‐(diphenylphosphoryl)‐ and α‐(diphenylphosphorothioyl)cycloalkanone oximes have been synthesized in search for novel bioactive molecules. Their structures were characterized by various spectroscopic methods including IR, NMR (1H, 31P, 13C), mass spectrometry and single crystal X‐ray diffraction. The newly synthesized phosphorus‐containing oximes were screened for their in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium) and fungal strains (Candida albicans and Candida glabrata). The biological assays showed that all the studied compounds exhibited high antibacterial and antifungal activities at only 0.1–2.1 μg/mL. In silico molecular docking studies in FabH enzyme active site were performed in order to predict the possible interaction modes and binding energies of the drug candidates at the molecular level.  相似文献   

17.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Fatty acid biosynthesis is essential for bacterial survival. Of these promising targets, β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) is the most attractive target. A series of novel 1,3,4-oxadiazole-2(3H)-thione derivatives containing 1,4-benzodioxane skeleton targeting FabH were designed and synthesized. These compounds were determined by 1H-NMR, 13C-NMR, MS and further confirmed by crystallographic diffraction study for compound 7m and 7n . Most of the compounds exhibited good inhibitory activity against bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compounds 7e and 7q exhibited the most significant inhibitory activities. Besides, compound 7q showed the best E. coli FabH inhibitory activity (IC50=2.45 μΜ). Computational docking studies also showed that compound 7q interacts with FabH critical residues in the active site.  相似文献   

19.
In this study, we report the synthesis, spectral characterization, antiepileptic activity and biotransformation of three new, chiral, N‐aminoalkyl derivatives of trans – 2 aminocyclohexan‐1‐ol: 1 (R enantiomer), 2 (S enantiomer) and 3 (racemate). Antiepileptic activity of the titled compounds was studied using MES and scMet. Moreover, in this study, the biotransformation of 1 , 2 and 3 in microbial model (Cunninghamella), liver microsomal assay as well as in silico studies (MetaSite) was evaluated. Studies have indicated that 1 , 2 and 3 have good antiepileptic activity in vivo, comparable to valproate. Biotransformation assays showed that the most probable metabolite (indicated in every tested assays) was M1 . The microbial model as well as in silico study showed no difference in biotransformation between tested enantiomers. However, in a rat liver microsomal study compound 1 and 2 (R and S enantiomer) had different main metabolite – M2 for 1 and M1 for 2 . MS/MS fragmentation allowed us to predict the structures of obtained metabolites, which were in agreement with 1°alcohol ( M1 ) and carboxylic acid ( M2 ). Our research has shown that microbial model, microsomal assay, and computational methods can be included as useful and reliable tools in early ADME‐Tox assays in the process of developing new drug candidates. Chirality 27:163–169, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Human nasopharyngeal carcinoma is a common head and neck malignancy with high incidence in Southeast Asia and Southern China. It is necessary to develop safe, effective and inexpensive anticancer agents to improve the therapeutics of patients with nasopharyngeal carcinoma. A series of small molecular compounds based on 6‐(pyrimidin‐4‐yl)‐1H‐indazole were synthesized and evaluated for antiproliferative activities against human nasopharyngeal carcinoma cell lines SUNE1. Compounds 6b , 6c , 6e and 6l showed potent antiproliferative activities similar to positive control drug cisplatin in vitro with lower nephrotoxicity than it. N‐[4‐(1H‐Indazol‐6‐yl)pyrimidin‐2‐yl]benzene‐1,3‐diamine ( 6l ) was selected for further study. It was found that 6l induced mitochondria‐mediated apoptosis and G2/M phase arrest in SUNE1 cells. Furthermore, compound 6l at 10 mg/kg can suppress the growth of an implanted SUNE1 xenograft with a TGI% (tumor growth inhibition) value of 50 % and did not cause serious side effects in BALB/c nude mice. This study suggests that 6‐(pyrimidin‐4‐yl)‐1H‐indazole derivatives are a series of small molecule compounds with anti‐nasopharyngeal carcinoma activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号