首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

2.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

3.
3‐amino‐benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coliE. coli co‐culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co‐culture system was found to improve 3AB production by 15 fold, compared to the mono‐culture approach. Further engineering of the co‐culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co‐culture engineering can be a powerful new approach in the broad field of metabolic engineering.  相似文献   

4.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

5.
The resolution methods applying (?)‐(4R,5R)‐4,5‐bis(diphenylhydroxymethyl)‐2,2‐dimethyldioxolane (“TADDOL”), (?)‐(2R,3R)‐α,α,α',α'‐tetraphenyl‐1,4‐dioxaspiro[4.5]decan‐2,3‐dimethanol (“spiro‐TADDOL”), as well as the acidic and neutral Ca2+ salts of (?)‐O,O'‐dibenzoyl‐ and (?)‐O,O'‐di‐p‐toluoyl‐(2R,3R)‐tartaric acid were extended for the preparation of 1‐n‐butyl‐3‐methyl‐3‐phospholene 1‐oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single‐crystal X‐ray analysis. The absolute P‐configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. Chirality 26:174–182, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

7.
New Delhi metallo‐beta‐lactamase‐1(NDM‐1)‐carrying isolates, which are resistant to most clinical used antibiotics except for tigecycline and colistin, have been found worldwide. Cathelicidin‐BF (BF‐30) is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Cbf‐K16 and Cbf‐A7A13 were obtained by mutating Lys16, Ala7, and Ala13 of BF‐30, respectively. To investigate their antimicrobial activities against NDM‐1 carrying bacteria, recombinant Escherichia coli BL21 (DE3)‐NDM‐1 with high NDM‐1 activity was constructed by inserting the Klebsiella pneumoniae NDM‐1 gene (GenBank accession no. HQ328085) into a pET28a vector and transforming it into E. coli BL21 (DE3). The peptides showed effective antimicrobial activities against NDM‐1‐carrying E. coli, and the minimum inhibitory concentrations of Cbf‐K16 and Cbf‐A7A13 were only 4 and 8 µg/ml, whereas those of minimum bactericidal concentrations were 8 and 16 µg/ml, respectively. A time course experiment showed that colony forming unit counts rapidly decreased, and bacteria were thoroughly eliminated within 3 and 6 h by the Cbf‐K16 and Cbf‐A7A13 treatments, respectively. The peptides penetrated the bacterial cell membrane and enabled β‐galactosidase leakage, and caused the cytoplasmic membrane to become permeable, and finally bound to the DNA. The genomic DNA of E. coli was completely unable to migrate on an agarose gel after Cbf‐K16 treatment (8 µg/ml). These data demonstrated that Cbf‐K16 and Cbf‐A7A13 possess effective antimicrobial activity against drug‐resistant strains, including NDM‐1 carrying E. coli BL21 (DE3)‐NDM‐1, by binding to DNA after penetrating the cytoplasmic membrane in vitro, which may have potential therapeutic value for the treatment of NDM‐1‐carrying bacterial infections. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The introduction of an NADH/NAD+ regeneration system can regulate the distribution between acetoin and 2,3‐butanediol. NADH regeneration can also enhance butanol production in coculture fermentation. In this work, a novel artificial consortium of Paenibacillus polymyxa CJX518 and recombinant Escherichia coli LS02T that produces riboflavin (VB2) was used to regulate the NADH/NAD+ ratio and, consequently, the distribution of acetoin and 2,3‐butanediol by P. polymyxa. Compared with a pure culture of P. polymyxa, the level of acetoin was increased 76.7% in the P. polymyxa and recombinant E. coli coculture. Meanwhile, the maximum production and yield of acetoin in an artificial consortium with fed‐batch fermentation were 57.2 g/L and 0.4 g/g glucose, respectively. Additionally, the VB2 production of recombinant E. coli could maintain a relatively low NADH/NAD+ ratio by changing NADH dehydrogenase activity. It was also found that 2,3‐butanediol dehydrogenase activity was enhanced and improved acetoin production by the addition of exogenous VB2 or by being in the artificial consortium that produces VB2. These results illustrate that the coculture of P. polymyxa and recombinant E. coli has enormous potential to improve acetoin production. It was also a novel strategy to regulate the NADH/NAD+ ratio to improve the acetoin production of P. polymyxa.  相似文献   

9.
Metoprolol is available for clinical use as a racemic mixture. The S‐(?)‐metoprolol enantiomer is the one expressing higher activity in the blockade of the β1‐adrenergic receptor. The α‐hydroxymetoprolol metabolite also has activity in the blockade of the β1‐adrenergic receptor. The present study describes the development and validation of a stereoselective method for sequential analysis of metoprolol and of α‐hydroxymetoprolol in plasma using high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS). 1‐ml aliquots of plasma were extracted with dichloromethane : diisopropyl ether (1:1, v/v). Metoprolol enantiomers and α‐hydroxymetoprolol isomers were separated on a Chiralpak AD column (Daicel Chemical Industries, New York, NY, USA) and quantitated by LC‐MS/MS. The limit of quantitation obtained was 0.2 ng of each metoprolol enantiomer/ml plasma and 0.1 ng/ml of each α‐hydroxymetoprolol isomer/ml plasma. The method was applied to the study of kinetic disposition of metoprolol in plasma samples collected up to 24 h after the administration of a single oral dose of 100‐mg metoprolol tartrate to a hypertensive parturient with a gestational age of 42 weeks. The clinical study showed that the metoprolol pharmakokinetics is enantioselective, with the observation of higher area under the curve (AUC)0?∞ values for S‐(?)‐metoprolol (AUCS‐(?)/AUCR‐(+) = 1.81) and the favoring of the formation of the new chiral center 1′R of α‐hydroxymetoprolol (AUC0?∞1′R/1′S = 2.78). Chirality, 25:1–7, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Production of monoclonal antibodies (mAbs) receives considerable attention in the pharmaceutical industry. There has been an increasing interest in the expression of mAbs in Escherichia coli for analytical and therapeutic applications in recent years. Here, a modular synthetic biology approach is developed to rationally engineer E. coli by designing three functional modules to facilitate high‐titer production of immunoglobulin G (IgG). First, a bicistronic expression system is constructed and the expression of the key genes in the pyruvate metabolism is tuned by the technologies of synthetic sRNA translational repression and gene overexpression, thus enhancing the cellular material and energy metabolism of E. coli for IgG biosynthesis (module 1). Second, to prevent the IgG biodegradation by proteases, the expression of a number of key proteases is identified and inhibited via synthetic sRNAs (module 2). Third, molecular chaperones are co‐expressed to promote the secretion and folding of IgG (module 3). Synergistic integration of the three modules into the resulting recombinant E. coli results in a yield of the full‐length IgG ≈150 mg L?1 in a 5L fed‐batch bioreactor. The modular synthetic biology approach could be of general use in the production of recombinant mAbs.  相似文献   

11.
L ‐Lysine is a potential feedstock for the production of bio‐based precursors for engineering plastics. In this study, we developed a microbial process for high‐level conversion of L ‐lysine into 5‐aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta‐aminovaleramidase (DavA) and lysine 2‐monooxygenase (DavB) was grown to high density in fed‐batch culture and used as a whole cell catalyst. High‐density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600) of 30, yielded 36.51 g/L 5AVA from 60 g/L L ‐lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L ‐lysine in 24 h. 5AVA production was further improved by doubling the L ‐lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L ‐lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ?‐caprolactam and δ‐valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio‐nylon production processes.  相似文献   

12.
An α‐amylase and a glucoamylase produced by Thermomyces lanuginosus F1 were separated by ion‐exchange chromatography on Q‐Sepharose fast flow. The enzymes were further purified to electrophoretic homogeneity by chromatography on Sephadex G‐100 and Phenyl‐Sepharose CL‐4B.The molecular weights and isoelectric points of the enzymes were 55,000 Da and pHi 4.0 for α‐amylase and 70,000 Da and pHi 4.0 for glucoamylase, respectively. The optimum pH and temperatures for the enzymes were found to be 5.0 and 60 °C for α‐amylase, and 6.0 and 70 °C for glucoamylase,respectively. Both enzymes were maximally stable at pH 4.0 and retained over 80% of their activity between pH 5.0 and 6.0 for 24 h. After incubation at 90 °C (1 h), the α‐amylase and glucoamylase retained only 6% and 16% of their activity, respectively. The enzymes readily hydrolyzed soluble starch, amylose, amylopectin and glycogen but hydrolyzed pullulan very slowly. Glucoamylase and α‐amylase had highest affinity for soluble starch with KM values of 0.80 mg/ml and 0.67 mg/ml, respectively. The α‐amylase hydrolyzed raw starch granules with a predominant production of glucose and maltose. The activities of α‐amylase and glucoamylase increased in the presence of Mn2+, Co2+, Ca2+, Zn2+ and Fe2+, but were inhibited by guanidine‐HCl, urea and disodium EDTA. Both enzymes possess pH and thermal stability characteristics that may be of technological significance.  相似文献   

13.
1,2,4‐Butanetriol (BT) is a valuable chemical with versatile applications in many fields and can be produced through biosynthetic pathways. As a trihydric alcohol, BT possesses good water solubility and is very difficult to separate from fermentation broth, which does complicate the production process and increase the cost. To develop a novel method for BT separation, a biosynthetic pathway for 1,2,4‐butanetriol esters with poor water solubility was constructed. Wax ester synthase/acyl‐coenzyme A: diacylglycerol acyltransferase (Atf) from Acinetobacter baylyi, Mycobacterium smegmatis, and Escherichia coli were screened, and the acyltransferase from A. baylyi (AtfA) was found to have higher capability. The BT producing strain with AtfA overexpression produced 49.5 mg/L BT oleate in flask cultivation. Through enhancement of acyl‐CoA production by overexpression of the acyl‐CoA synthetase gene fadD and deleting the acyl coenzyme A dehydrogenase gene fadE, the production was improved to 64.4 mg/L. Under fed‐batch fermentation, the resulting strain produced up to 1.1 g/L BT oleate. This is the first time showed that engineered E. coli strains can successfully produce BT esters from xylose and free fatty acids.  相似文献   

14.
In continuation of our previous research on the development of novel pyrazole‐4‐carboxamide with potential antifungal activity, compound SCU2028 , namely N‐[2‐[(3‐chlorophenyl)amino]phenyl]‐3‐(difluoromethyl)‐1‐methyl‐1H‐pyrazole‐4‐carboxamide, was synthesized by new method, structurally characterized by IR, HR‐ESI‐MS, 1H‐ and 13C‐NMR spectra and further identified by single‐crystal X‐ray diffraction. In pot tests, compound SCU2028 showed good in vivo antifungal activity against Rhizoctonia solani (R. solani) and IC50 value of it was 7.48 mg L?1. In field trials, control efficacy of compound SCU2028 at 200 g.a.i. ha?1 was 42.30 % on the 7th day after the first spraying and 68.10 % on the 14th day after the second spraying, only slightly lower than that of thifluzamide (57.20 % and 71.40 %, respectively). Further in vitro inhibitory activity showed inhibitory ability of compound SCU2028 was 45‐fold higher than that of bixafen and molecular docking of compound SCU2028 to SDH predicted its binding orientation in the active site of the target protein SDH. These results suggested that compound SCU2028 was a potential fungicide for control of rice sheath blight.  相似文献   

15.
Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L.  相似文献   

16.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

17.
Three mononuclear CuII complexes, [CuCl(naph‐pa)] ( 1 ), [Cu(bipy)(naph‐pa)]Cl ( 2 ), and [Cu(naph‐pa)(phen)]Cl ( 3 ) ((naph‐pa)=Schiff base derived from the condensation of 2‐hydroxynaphthalene‐1‐carbaldehyde and 2‐picolylamine (=2‐(aminomethyl)pyridine), bipy=2,2′‐bypiridine, and phen=1,10‐phenanthroline) were synthesized and characterized. Complex 1 exhibits square‐planar geometry, and 2 and 3 exhibit square pyramidal geometry, where Schiff base and bipy/phen act as NNO and as NN donor ligands, respectively. CT (Calf thymus)‐DNA‐binding studies revealed that the complexes bind through intercalative mode and show good binding propensity (intrinsic binding constant Kb: 0.98×105, 2.22×105, and 2.67×105 M ?1 for 1 – 3 , resp.). The oxidative and hydrolytic DNA‐cleavage activity of these complexes has been studied by gel electrophoresis: all the complexes displayed chemical nuclease activity in the presence and absence of H2O2. From the kinetic experiments, hydrolytic DNA cleavage rate constants were determined as 2.48, 3.32, and 4.10 h?1 for 1 – 3 , respectively. It amounts to (0.68–1.14)×108‐fold rate enhancement compared to non‐catalyzed DNA cleavage, which is impressive. The complexes display binding and cleavage propensity to DNA in the order of 3 > 2 > 1 .  相似文献   

18.
Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L?1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.  相似文献   

19.
Diabetic neuropathic pain is characterized by spontaneous pain with hyperalgesia and allodynia. We investigated whether (?)‐epigallocatechin‐3‐O‐gallate could improve diabetic neuropathic pain development through hypoglycemic, hypolipidemic, antioxidant, and anti‐inflammatory effects. Diabetes was induced in rats by streptozotocin (55 mg/kg/once) and treated with (?)‐epigallocatechin‐3‐O‐gallate (25 mg/kg/orally/once/daily/5 weeks). Diabetic rats showed an increase in serum levels of glucose, nitric oxide, triglyceride, total cholesterol, and low‐density lipoprotein‐cholesterol with a decrease in high‐density lipoprotein‐cholesterol and body weight. Also, there was an elevation in brain malondialdehyde with a marked reduction in brain levels of glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione‐S‐transferase. Furthermore, diabetic rats showed a clear reduction in plasma levels of insulin and an increase in plasma cytokines (interleukin‐6 and tumor necrosis factor‐α). Moreover, diabetic rats exhibited hyperalgesia as indicated by a hot plate, tail immersion, formalin, and carrageenan‐induced edema tests as well as brain histopathological changes (neuron degeneration, gliosis, astrocytosis, congestion and hemorrhage). (?)‐Epigallocatechin‐3‐O‐gallate treatment ameliorated alterations in body weight, biochemical parameters, pain sensation, and histopathological changes in brain tissue. (?)‐Epigallocatechin‐3‐O‐gallate offers promising hypoglycemic, hypolipidemic, antioxidant and anti‐inflammatory effects, which can prevent the development and progression of diabetic neuropathic pain.  相似文献   

20.
Through metabolic pathway engineering, novel microbial biocatalysts can be engineered to convert renewable resources into useful chemicals, including monomer building‐blocks for bioplastics production. Here we describe the systematic engineering of Escherichia coli to produce, as individual products, two 5‐carbon polyamide building blocks, namely 5‐aminovalerate (AMV) and glutarate. The modular pathways were derived using “parts” from the natural lysine degradation pathway of Pseudomonas putida KT2440. Endogenous over‐production of the required precursor, lysine, was first achieved through metabolic deregulation of its biosynthesis pathway by introducing feedback resistant mutants of aspartate kinase III and dihydrodipicolinate synthase. Further disruption of native lysine decarboxylase activity (by deleting cadA and ldcC) limited cadaverine by‐product formation, enabling lysine production to 2.25 g/L at a glucose yield of 138 mmol/mol (18% of theoretical). Co‐expression of lysine monooxygenase and 5‐aminovaleramide amidohydrolase (encoded by davBA) then resulted in the production of 0.86 g/L AMV in 48 h. Finally, the additional co‐expression of glutaric semialdehyde dehydrogenase and 5‐aminovalerate aminotransferase (encoded by davDT) led to the production of 0.82 g/L glutarate under the same conditions. At this output, yields on glucose were 71 and 68 mmol/mol for AMV and glutarate (9.5 and 9.1% of theoretical), respectively. These findings further expand the number and diversity of polyamide monomers that can be derived directly from renewable resources. Biotechnol. Bioeng. 2013; 110: 1726–1734. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号