首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The presence or absence of a chemoreceptive capacity in marine mammals has drawn relatively little attention from the research community outside the Soviet Union. Toothed whales are typically labelled anosmic (lacking a sense of smell) since they do not have the peripheral olfactory structures typically associated with terrestrial mammals. Baleen whales are known to possess reduced olfactory tracts; their olfactory bulbs also may be reduced or absent. Although the neural structures that mediate taste in terrestrial mammals have been reported to be present in both groups of whales, cetaceans have been considered to have a poor sense of taste because typical mammalian taste receptors have been thought to be absent. Soviet researchers, however, recently have reported that gustatory receptors are present on some cetacean tongues and that the tongue of Tursiops truncatus appear to be well innervated. These workers also have been conducting investigations which seem to be aimed at describing a specialized gustatory capability in cetaceans. No experimental work has been reported by Western scientists. Little work has been done by either Western or Soviet researchers with regard to chemoreception among the other orders of marine mammals (Pinnipedia, Carnivora and Sirenia). Pinnipedia are typically labelled microsmatic (having a poor sense of smell); research has been restricted to histological examination of the nasal pathways, and neural anatomy. Sea otters are credited with a keen sense of smell, but no quantitative work has been reported. The chemosensory abilities of Sirenia remain unknown. The tongues of non-cetacean marine mammals have been histologically examined and found to resemble those of terrestrial mammals. No other investigations of gustation in non-cetacean marine mammals have been reported.  相似文献   

2.
3.
Understanding the degree of connectivity between coastal and island landscapes and nearby coral reefs is vital to the integrated management of terrestrial and marine environments in the tropics. Coral reef fish are capable of navigating appropriate settlement habitats following their pelagic larval phase, but the mechanisms by which they do this are unclear. The importance of olfactory cues in settlement site selection has been demonstrated, and there is increasing evidence that chemical cues from terrestrial sources may be important for some species. Here, we test the olfactory preferences of eight island-associated coral reef fish recruits and one generalist species to discern the capacity for terrestrial cue recognition that may aid in settlement site selection. A series of pairwise choice experiments were used to evaluate the potential role that terrestrial, water-borne olfactory cues play in island-reef recognition. Olfactory stimuli tested included near-shore water, terrestrial rainforest leaf litter, and olfactory cues collected from different reef types (reefs surrounding vegetated islands, and reefs with no islands present). All eight island-associated species demonstrated high levels of olfactory discrimination and responded positively toward olfactory cues indicating the presence of a vegetated island. We hypothesize that although these fish use a suite of cues for settlement site recognition, one mechanism in locating their island/reef habitat is through the olfactory cues produced by vegetated islands. This research highlights the role terrestrial olfactory cues play in large-scale settlement site selection and suggests a high degree of ecosystem connectivity.  相似文献   

4.
The vulnerability of the human brain to injury following just a few minutes of oxygen deprivation with submergence contrasts markedly with diving mammals, such as Weddell seals (Leptonychotes weddellii), which can remain underwater for more than 90 min while exhibiting no neurological or behavioural impairment. This response occurs despite exposure to blood oxygen levels concomitant with human unconsciousness. To determine whether such aquatic lifestyles result in unique adaptations for avoiding ischaemic-hypoxic neural damage, we measured the presence of circulating (haemoglobin) and resident (neuroglobin and cytoglobin) oxygen-carrying globins in the cerebral cortex of 16 mammalian species considered terrestrial, swimming or diving specialists. Here we report a striking difference in globin levels depending on activity lifestyle. A nearly 9.5-fold range in haemoglobin concentration (0.17-1.62 g Hb 100 g brain wet wt(-1)) occurred between terrestrial and deep-diving mammals; a threefold range in resident globins was evident between terrestrial and swimming specialists. Together, these two globin groups provide complementary mechanisms for facilitating oxygen transfer into neural tissues and the potential for protection against reactive oxygen and nitrogen groups. This enables marine mammals to maintain sensory and locomotor neural functions during prolonged submergence, and suggests new avenues for averting oxygen-mediated neural injury in the mammalian brain.  相似文献   

5.
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.  相似文献   

6.
The evolutionary history of marine mammals involved marked physiologicaland morphological modifications to change from terrestrial toaquatic locomotion. A consequence of this ancestry is that swimmingis energetically expensive for mammals in comparison to fish.This study examined the use of behavioral strategies by marinemammals to circumvent these elevated locomotor costs duringhorizontal swimming and vertical diving. Intermittent formsof locomotion, including wave-riding and porpoising when nearthe water surface, and prolonged gliding and a stroke and glidemode of propulsion when diving, enabled marine mammals to increasethe efficiency of aquatic locomotion. Video instrumentationpacks (8-mm camera, video recorder and time-depth microprocessor)deployed on deep diving bottlenose dolphins (Tursiops truncatus),northern elephant seals (Mirounga angustirostris), and Weddellseals (Leptonychotes weddellii) revealed exceptionally longperiods of gliding during descent to depth. Glide duration dependedon depth and represented nearly 80% of the descent for divesexceeding 200 m. Transitions in locomotor mode during divingwere attributed to buoyancy changes with compression of thelungs at depth, and were associated with a 9–60% reductionin the energetic cost of dives for the species examined. Bychanging to intermittent locomotor patterns, marine mammalsare able to increase travelling speed for little additionalenergetic cost when surface swimming, and to extend the durationof submergence despite limitations in oxygen stores when diving.  相似文献   

7.
A variety of mammalian lineages have secondarily invaded the water. To locomote and thermoregulate in the aqueous medium, mammals developed a range of morphological, physiological, and behavioral adaptations. A distinct difference in the suite of adaptations, which affects energetics, is apparent between semiaquatic and fully aquatic mammals. Semiaquatic mammals swim by paddling, which is inefficient compared to the use of oscillating hydrofoils of aquatic mammals. Semiaquatic mammals swim at the water surface and experience a greater resistive force augmented by wave drag than submerged aquatic mammals. A dense, nonwettable fur insulates semiaquatic mammals, whereas aquatic mammals use a layer of blubber. The fur, while providing insulation and positive buoyancy, incurs a high energy demand for maintenance and limits diving depth. Blubber contours the body to reduce drag, is an energy reserve, and suffers no loss in buoyancy with depth. Despite the high energetic costs of a semiaquatic existence, these animals represent modern analogs of evolutionary intermediates between ancestral terrestrial mammals and their fully aquatic descendants. It is these intermediate animals that indicate which potential selection factors and mechanical constraints may have directed the evolution of more derived aquatic forms.  相似文献   

8.
Nearly all vertebrates possess an olfactory organ but the vomeronasal organ is a synapomorphy for tetrapods. Nevertheless, it has been lost in several groups of tetrapods, including aquatic and marine animals. The present study examines the development of the olfactory and vomeronasal organs in two terrestrial anurans that exhibit different developmental modes. This study compares the development of the olfactory and vomeronasal organs in metamorphic anurans that exhibit an aquatic larva (Bufo americanus) and directly developing anurans that have eliminated the tadpole (Eleutherodactylus coqui). The olfactory epithelium in larval B. americanus is divided into dorsal and ventral branches in the rostral and mid-nasal regions. The larval olfactory pattern in E. coqui has been eliminated. Ontogeny of the olfactory system in E. coqui embryos starts to vary substantially from the larval pattern around the time of operculum development, the temporal period when the larval stage is hypothesized to have been eliminated. The nasal anatomy of the two frogs does not appear morphologically similar until the late stages of embryogenesis in E. coqui and the terminal portion of metamorphosis in B. americanus. Both species and their respective developing offspring, aquatic tadpoles and terrestrial egg/embryos, possess a vomeronasal organ. The vomeronasal organ develops at mid-embryogenesis in E. coqui and during the middle of the larval period in B. americanus, which is relatively late for neobatrachians. Development of the vomeronasal organ in both frogs is linked to the developmental pattern of the olfactory system. This study supports the hypothesis that the most recent common ancestor of tetrapods possessed a vomeronasal organ and was aquatic, and that the vomeronasal organ was retained in the Amphibia, but lost in some other groups of tetrapods, including aquatic and marine animals.  相似文献   

9.
Cetaceans, early in their evolutionary history, had developed many physiological adaptations to secondarily return to the sea. Among these adaptations, changes in molecules that transport oxygen and that ultimately support large periods of acute tissue hypoxia probably represent one big step toward the conquest of aquatic environments. Myoglobin contributes to intracellular oxygen storage and transcellular diffusion of oxygen in muscle, and plays an important role in supplying oxygen in hypoxic or ischemic conditions. Here we looked for evidence of adaptive molecular evolution of myoglobin in the cetacean lineage, relative to their terrestrial counterparts. We performed a comparative analysis to examine the variation of the parameter ω (d N/d S) and infer past period of adaptive evolution during the cetacean transition from the terrestrial to the aquatic environment. We also analyzed the changes in amino acid properties. At the nucleotide level, the results showed significant differences in selective pressure between cetacean and non-cetacean myoglobin (ω value three times higher in cetaceans when compared to terrestrial mammals), and also among cetacean lineages according to their diving capacities. Interestingly, both families with long duration diving cetaceans present two parallel substitutions (on sites 4 and 12). Regarding the amino acid properties, our analysis identified four significant physicochemical amino acid changes among residues in myoglobin protein under positive destabilizing selection.  相似文献   

10.
Auditory information is widely used throughout the animal kingdom in both terrestrial and aquatic environments. Some marine species are dependent on reefs for adult survival and reproduction, and are known to use reef noise to guide orientation towards suitable habitat. Many others that forage in food-rich inshore waters would, however, benefit from avoiding the high density of predators resident on reefs, but nothing is known about whether acoustic cues are used in this context. By analysing a sample of nearly 700,000 crustaceans, caught during experimental playbacks in light traps in the Great Barrier Reef lagoon, we demonstrate an auditory capability in a broad suite of previously neglected taxa, and provide the first evidence in any marine organisms that reef noise can act as a deterrent. In contrast to the larvae of species that require reef habitat for future success, which showed an attraction to broadcasted reef noise, taxa with a pelagic or nocturnally emergent lifestyle actively avoided it. Our results suggest that a far greater range of invertebrate taxa than previously thought can respond to acoustic cues, emphasising yet further the potential negative impact of globally increasing levels of underwater anthropogenic noise.  相似文献   

11.
An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish-tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals.  相似文献   

12.
While ocean acidification is predicted to threaten marine biodiversity, the processes that directly impact species persistence are not well understood. For marine species, early life history stages are inherently vulnerable to predators and an innate ability to detect predators can be critical for survival. However, whether or not acidification inhibits predator detection is unknown. Here, we show that newly hatched larvae of the marine fish Amphiprion percula innately detect predators using olfactory cues and this ability is retained through to settlement. Aquarium-reared larvae, not previously exposed to predators, were able to distinguish between the olfactory cues of predatory and non-predatory species. However, when eggs and larvae were exposed to seawater simulating ocean acidification (pH 7.8 and 1000 p.p.m. CO2) settlement-stage larvae became strongly attracted to the smell of predators and the ability to discriminate between predators and non-predators was lost. Newly hatched larvae were unaffected by CO2 exposure and were still able to distinguish between predatory and non-predatory fish. If this impairment of olfactory preferences in settlement-stage larvae translates to higher mortality as a result of increased predation risk, there could be direct consequences for the replenishment and the sustainability of marine populations.
Ecology Letters (2010) 13: 68–75  相似文献   

13.
The ability to identify chemical cues in the environment is essential to most animals. Apart from marine larval stages, anomuran land hermit crabs (Coenobita) have evolved different degrees of terrestriality, and thus represent an excellent opportunity to investigate adaptations of the olfactory system needed for a successful transition from aquatic to terrestrial life. Although superb processing capacities of the central olfactory system have been indicated in Coenobita and their olfactory system evidently is functional on land, virtually nothing was known about what type of odourants are detected. Here, we used electroantennogram (EAG) recordings in Coenobita clypeatus and established the olfactory response spectrum. Interestingly, different chemical groups elicited EAG responses of opposite polarity, which also appeared for Coenobita compressus and the closely related marine hermit crab Pagurus bernhardus. Furthermore, in a two-choice bioassay with C. clypeatus, we found that water vapour was critical for natural and synthetic odourants to induce attraction or repulsion. Strikingly, also the physiological response was found much greater at higher humidity in C. clypeatus, whereas no such effect appeared in the terrestrial vinegar fly Drosophila melanogaster. In conclusion, our results reveal that the Coenobita olfactory system is restricted to a limited number of water-soluble odourants, and that high humidity is most critical for its function.  相似文献   

14.
Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.  相似文献   

15.
Among terrestrial mammals, the morphology of the gastrointestinal tract reflects the metabolic demands of the animal and individual requirements for processing, distributing, and absorbing nutrients. To determine if gastrointestinal tract morphology is similarly correlated with metabolic requirements in marine mammals, we examined the relationship between basal metabolic rate (BMR) and small intestinal length in pinnipeds and cetaceans. Oxygen consumption was measured for resting bottlenose dolphins and Weddell seals, and the results combined with data for four additional species of carnivorous marine mammal. Data for small intestinal length were obtained from previously published reports. Similar analyses were conducted for five species of carnivorous terrestrial mammal, for which BMR and intestinal length were known. The results indicate that the BMRs of Weddell seals and dolphins resting on the water surface are 1.6 and 2.3 times the predicted levels for similarly sized domestic terrestrial mammals, respectively. Small intestinal lengths for carnivorous marine mammals depend on body size and are comparatively longer than those of terrestrial carnivores. The relationship between basal metabolic rate (kcal day(-1)) and small intestinal length (m) for both marine and terrestrial carnivores was, BMR=142.5 intestinal length(1.20) (r(2)=0.83). We suggest that elevated metabolic rates among marine mammal carnivores are associated with comparatively large alimentary tracts that are presumably required for supporting the energetic demands of an aquatic lifestyle and for feeding on vertebrate and invertebrate prey.  相似文献   

16.
The diving response in marine mammals results in bradycardia and peripheral vasoconstriction, with blood flow redistributing preferentially to nervous and cardiac tissues. Therefore, some tissues are rendered ischemic during a dive; with the first breath after a dive, blood flow to all tissues is reestablished. In terrestrial mammals, reactive oxygen species (ROS) production increases in response to ischemia/reperfusion and oxidative damage can occur. The capacity of marine mammals to tolerate repeated ischemia/reperfusion cycles associated with diving appears to be due to an enhanced antioxidant system. However, it is not known if diving depth and/or duration elicit differences in tissue capacity to produce ROS and antioxidant defenses in marine mammals. The objective of this study was to analyze ROS production, antioxidant defenses and oxidative damage in marine mammal species that perform shallow/short vs. deep/long dives. We measured production of superoxide radical (O2??), oxidative damage to lipids and proteins, activity of antioxidant enzymes, and glutathione levels in tissues from shallow/short divers (Tursiops truncatus) and deep/long divers (Kogia spp.). We found that differences between the diving capacity of dolphins and Kogia spp. are reflected in O2?? production and antioxidant levels. These differences suggest that shallow/short and deep/long divers have distinct mechanisms to successfully maintain redox balance.  相似文献   

17.

Background

Diversity of hair in marine mammals was suggested as an evolutionary innovation to adapt aquatic environment, yet its genetic basis remained poorly explored. We scanned α-keratin genes, one major structural components of hair, in 16 genomes of mammalian species, including seven cetaceans, two pinnipeds, polar bear, manatee and five terrestrial species.

Results

Extensive gene loss and high pseudogenization rate of α-keratin genes were identified in cetaceans when compared to terrestrial artiodactylans (average number of α-keratins 37.29 vs. 58.33; pseudogenization rate 29.89% vs. 8.00%), especially of hair follicle-specific keratin genes (average pseudogenization rate in cetaceans of 43.88% relative to 3.80% artiodactylian average). Compared to toothed whale, the much more number of intact functional α-keratin genes was examined in the baleen whale that had specific keratinized baleen. In contrast, the number of keratin genes in pinnipeds, polar bear and manatee were comparable to those of their respective terrestrial relatives. Additionally, four keratin genes (K39, K9, K42, and K74) were found to be pseudogenes or lost uniquely in cetaceans and manatees.

Conclusions

Species-specific evolution of α-keratin gene family identified in the marine mammals might be responsible for their different hair characteristics. Increased gene loss and pseudogenization rate identified in cetacean lineages was likely to contribute to hair-less phenotype to adaptation for complete aquatic environment. However, the fully aquatic manatee still remained the comparable number of intact genes to its terrestrial relative, probably due to its perioral bristles and bristle-like hairs on the oral disk. By contrast, similar evolution pattern of α-keratin gene repertoire in the pinnipeds, polar bear and their terrestrial relatives was likely due to abundant hair to keep warm when they went ashore. Interestingly, some keratin genes were exclusively lost in cetaceans and manatees, likely as a result of convergent hair-loss phenotype to inhabit completely aquatic environment in both groups.
  相似文献   

18.
Carnivora includes three independent evolutionary transitions to the marine environment: pinnipeds (seals, sea lions, and walruses), sea otters, and polar bears. All three lineages must contend with the thermal challenges of submersion in the marine environment. In the present study, we investigated changes in the fur associated with the transition from a terrestrial to an aquatic lifestyle, comparing fur characteristics among these lineages with those of semi‐aquatic and strictly terrestrial carnivores. Characteristics included gross morphology (hair cuticle shape, circularity, length, and density) and thermal conductivity. We found consistent trends in hair morphology associated with aquatic living, such that marine carnivores have significantly flatter (P < 0.001), shorter (P < 0.001), and denser hairs (P < 0.001) than terrestrial carnivores. However, sea lions, phocids, and walrus, which have thicker blubber layers than fur seals, have lower fur densities than fur seals (P < 0.001). Species utilizing fur for insulation in water also showed an elongation of hair cuticle scales compared to terrestrial species and marine species relying on blubber for insulation (P < 0.001). By testing pelts under hydrostatic pressure, we determined that flattening of the hairs, cuticular scale elongation, and increased fur density are critical characteristics for maintaining an insulating air layer within the fur during submersion. Overall, these results indicate consistent evolutionary modifications to the fur associated with the transition to aquatic living, as well as a decrease in fur function associated with a greater reliance on blubber in some groups. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

19.
An important low molecular weight antioxidant in biological systems is glutathione; its efficiency depends on the equilibrium between its reduced (GSH) and oxidized (GSSG) forms. The oxidized:total glutathione (GSSG:GSH‐Eq) ratio can be used as an indicator of oxidative stress. Previous studies suggest that marine mammals, unlike terrestrial mammals, do not show adverse effects in tissues exposed to ischemia/reperfusion during the peripheral vasoconstriction associated with breath‐hold diving. This is due, in part, to higher antioxidant enzyme activities in marine mammals compared with terrestrial mammals. The objective of this study was to compare circulating glutathione levels among mammals with different diving capacities. Circulating GSH‐Eq, GSH, and GSSG concentrations in erythrocyte samples from northern elephant seals (Mirounga angustirostris), bottlenose dolphins (Tursiops truncatus), neotropical otters (Lontra longicaudis annectens), domestic pigs (Sus scrofa), and humans were quantified using spectrophotometry. Higher GSH‐Eq and GSH concentrations and a lower GSSG:GSH‐Eq index were found in erythrocytes from northern elephant seals and bottlenose dolphins as compared to otters, domestic pigs, and humans. Results suggest that marine mammals, independent of their diving capacity, possess a highly developed antioxidant system, including GSH; continuous availability of GSH could allow these species to avoid oxidative damage and tolerate ischemia/reperfusion and hypoxia/reoxygenation events associated with diving.  相似文献   

20.
刘瑞  曹阳  刘兴  田然  徐士霞 《兽类学报》2021,41(3):296-309
鲸类(Cetacea)具有超强潜水能力,长时间潜水造成的体内低氧是其适应完全水生生活面临的挑战之一。为了克服体内低氧环境,鲸类产生了一系列低氧耐受相关的解剖和生理等方面的适应特征,然而这一适应的分子机制仍不清楚。本研究选择在细胞感知和适应内环境氧分压变化的过程中发挥重要作用的低氧诱导因子(Hypoxia-inducible factor 1α,HIF1α)和低氧环境下抑制能量代谢的结节性复合物1(Tuberous sclerosis complex 1,TSC1)基因为候选基因,选择压力检测发现鲸类TSC1基因的6个正选择位点至少被两种最大似然法(Maximum Likelihood,ML)检测到,且通过与陆生哺乳动物同源序列比较分析,鲸类鉴定出7个特异的氨基酸突变。这些正选择和特异突变位点有30.77%(4/13)发生了激进氨基酸性质改变,且正选择位点位于重要结构域附近。正选择信号主要集中在鲸类内部各支系中,提示鲸类为了适应低氧环境,这两个基因可能发生了功能改变,以保护细胞免受低氧损伤。我们在低氧耐受不同类群间共检测到66个平行/趋同进化位点,为低氧耐受不同类群的趋同的低氧适应提供了分子证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号