首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On-site genetic detection needs to develop a sensitive and straightforward biosensor without special equipment, which can detect various genetic biomarkers. Hybridization chain reaction (HCR) amplifying signal isothermally could be considered as a good candidate for on-site detection. Here, we developed a novel genetic biosensor on the basis of enzyme-free dual-amplification of universal hybridization chain reaction (uHCR) and hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme. The uHCR is the strategy which enables simple design for multiple target detection by the introduction of target-specific trigger hairpin without changing the whole system according to a target change. Also, HRP-mimicking DNAzyme could produce a sensitive and quantitative colorimetric signal with increased stability with a limit of detection (LOD) of 5.67 nM. The universality of the uHCR biosensor was proven by the detection of four different targets (miR-21, miR-125b, KRAS-Q61K, and BRAF-V600E) for cancer diagnosis. The uHCR biosensor showed specificity that could discriminate single-nucleotide polymorphism. Moreover, the uHCR biosensor could detect targets in the diluted serum sample. Overall, the uHCR biosensor demonstrated the potential for field testing with a simple redesign without complicated steps or special equipment using a universal hairpin system and enzyme-free amplification. This strategy could enable stable and sensitive detection of a variety of targets. Therefore, it could be applied to urgent detection of various pathogens, remote diagnosis, and self-screening of diseases.  相似文献   

2.
Peroxidase‐mimicking DNAzyme has a potential to self‐assemble into a G‐quadruplex and shows peroxidase activity. In comparison to proteins, peroxidase‐mimicking DNAzyme is less expensive and more stable. Herein, it is used in fabricating non‐labeling biosensors. This paper investigates the structural and functional properties of a DNA biosensor based on split DNAzyme with a detection limit in nM range (9.48 nM). Two halves of DNAzyme were linked by a complementary sequence of DNA target. Hybridization of the DNA target pulled two DNAzyme halves apart and peroxidase activity decreased. This study can be divided into 3 stages. First, the characteristics of DNAzyme were studied by Circular Dichroism technique and UV–Vis spectroscopy to find out DNAzyme's optimum activity. It is worth to note that some divalent cations were used to form G‐quadruplex, in addition to common monovalent cations. Furthermore, the hemin incubation was also optimized. Secondly, the structural and functional properties of two types of split DNAzyme were compared with DNAzyme. Thirdly, the hybridization of DNA target was monitored. The results revealed that peroxidase activities of split types decreased by half without any specific conformational changes. Interestingly, the catalytic activities of split DNAzymes could be promoted by adding Mg2+. Besides, it was demonstrated that the structure, peroxidation reaction, and DNA target hybridization of 2:2 and 3:1 split modes were almost alike. It was also illustrated that magnesium promoted the possibility of hybridization.  相似文献   

3.
A detection technique with a DNA probe was developed for the bloom‐forming alga Alexandrium affine harvested in Japan. The design of this probe was based on the sequence polymorphism within the 28S ribosomal DNA (rDNA) of this strain using the BIAcore? 2000 biosensor, which determines surface plasmon resonance. The specific DNA sequence in 28S rDNA for A. affine was determined by sequence data analysis, and a probe was designed for the detection of A. affine. A fragment of the 28S rDNA from A. affine was amplified by polymerase chain reaction and applied to the BIAcore? sensor system, and the target DNA was selectively recognized by species‐specific hybridization using two DNA probes: a fluorescein isothiocyanate (FITC)‐labeled probe and a biotin‐labeled DNA probe. Using FITC‐labeled anti‐immunogloblin G antibody, enhancement of the response for the target DNA can be detected directly as a resonant unit change. In this detection method, a difference within only 20 base pairs of the target could be detected, and specific detection of A. affine was achieved intraspecifically.  相似文献   

4.
Traditional methods of identifying food‐borne pathogens are time consuming and laborious, so innovative methods for their rapid identification must be developed. Testing for bioluminescence pyrophosphate is a convenient and fast method of detecting pathogens without complex equipment. However, the sensitivity of the method is not as high as that of other methods, and it has a very high detection limit. In this study, the method was optimized to improve its sensitivity. The shortcomings of the method were first identified and corrected using dATPαS instead of dATP for the polymerase chain reaction (PCR), therefore reducing the background signal. Also, when the DNA template extracted from the food‐borne pathogens was purified, the new bioluminescence pyrophosphate assay had a limit of detection of <10 copy/μl or 10 colony‐forming units/ml, and its sensitivity was higher than that of fluorescent real‐time quantitative PCR. Moreover, a single copy of a food‐borne pathogen could be detected when a single DNA template was included in the PCR. Salmonella was detected in and isolated from 60 samples of broiler chicken, and the accuracy of the results was verified using a culture method (GB 4789.4–2010). These results showed that the new bioluminescence pyrophosphate assay has the advantages of an intuitive detection process, convenient operation, and rapid measurements. Therefore, it can be used for the rapid detection of pathogenic bacteria and probiotics in various fields.  相似文献   

5.

In this work, a label-free and inexpensive method for the monitoring of water pollutants is demonstrated. We introduce a localized surface plasmon resonance (LSPR) based plasmonic capillary optical biosensor to detect microalgae cells. Here, the plasmonic capillary biosensor was prepared by decorating the inner walls of a glass capillary with gold nanoparticles that were employed for investigations. Since the gold nanoparticle has the potential to sense pollutants in water rapidly with high sensitivity and they are expected to perform a significant role in environmental monitoring. Our proposed plasmonic capillary sensor has a detection limit of 25 algal cells (Chlorella sp. CB4). Furthermore, the plasmonic capillary sensing platform significantly simplifies sensor fabrication and reduces the cost of the device. We believe that the presented plasmonic sensor could stand as a potential candidate for developing a cost-effective, label-free, and rapid sensing platform to detect microalgae pollutants present in the water at very low concentrations.

  相似文献   

6.

Aims

To develop multiplex TaqMan real‐time PCR assays for detection of spinach seedborne pathogens that cause economically important diseases on spinach.

Methods and Results

Primers and probes were designed from conserved sequences of the internal transcribed spacer (for Peronospora farinosa f. sp. spinaciae and Stemphylium botryosum), the intergenic spacer (for Verticillium dahliae) and the elongation factor 1 alpha (for Cladosporium variabile) regions of DNA. The TaqMan assays were tested on DNA extracted from numerous isolates of the four target pathogens, as well as a wide range of nontarget, related fungi or oomycetes and numerous saprophytes commonly found on spinach seed. Multiplex real‐time PCR assays were evaluated by detecting two or three target pathogens simultaneously. Singular and multiplex real‐time PCR assays were also applied to DNA extracted from bulked seed and single spinach seed.

Conclusions

The real‐time PCR assays were species‐specific and sensitive. Singular or multiplex real‐time PCR assays could detect target pathogens from both bulked seed samples as well as single spinach seed.

Significance and Impact of the Study

The freeze‐blotter assay that is currently routinely used in the spinach seed industry to detect and quantify three fungal seedborne pathogens of spinach (C. variabile, S. botryosum and V. dahliae) is quite laborious and takes several weeks to process. The real‐time PCR assays developed in this study are more sensitive and can be completed in a single day. As the assays can be applied easily for routine seed inspections, these tools could be very useful to the spinach seed industry.  相似文献   

7.
A new and simple method was developed to detect adenosine triphosphate (ATP) by using a DNAzyme aptamer sensor. The DNAzyme used was a single‐stranded DNA that could combine with hemin. The aptamer, a single, short nucleic acid sequence that can specifically bind with many targets, was an anti‐ATP aptamer. Two DNA sequences were designed: i) a functional chain (Chain A) consisting of two parts, i.e., the anti‐ATP aptamer (recognition part) and the DNAzyme (signal transduction part) and ii) a blocker chain (Chain B), which could partially hybridize with Chain A. The hybridized chains A and B were unfolded by the addition of ATP and hemin, and the blocker chain and the complex of the functional chain with ATP and hemin were in solution. The DNAzyme in the functional chain formed a G‐quadruplex with hemin and then catalyzed the oxidation by H2O2 of 2,2′‐azinobis(3‐ethylbenzthiazoline‐6‐sulfonic acid) (ABTS2−) to the colored ABTS.− radical. The color change caused by this reaction could be clearly observed by naked eye, and the absorbance was recorded at 414 nm. The detection limit was 1×10−6 M .  相似文献   

8.
We report the first application of CRISPR‐Cas technology to single species detection from environmental DNA (eDNA). Organisms shed and excrete DNA into their environment such as in skin cells and faeces, referred to as environmental DNA (eDNA). Utilising eDNA allows noninvasive monitoring with increased specificity and sensitivity. Current methods primarily employ PCR‐based techniques to detect a given species from eDNA samples, posing a logistical challenge for on‐site monitoring and potential adaptation to biosensor devices. We have developed an alternative method; coupling isothermal amplification to a CRISPR‐Cas12a detection system. This utilises the collateral cleavage activity of Cas12a, a ribonuclease guided by a highly specific single CRISPR RNA. We used the target species Salmo salar as a proof‐of‐concept test of the specificity of the assay among closely related species and to show the assay is successful at a single temperature of 37°C with signal detection at 535 nM. The specific assay, detects at attomolar sensitivity with rapid detection rates (<2.5 hr). This approach simplifies the challenge of building a biosensor device for rapid target species detection in the field and can be easily adapted to detect any species from eDNA samples from a variety of sources enhancing the capabilities of eDNA as a tool for monitoring biodiversity.  相似文献   

9.
In this paper, a novel and cost-effective homogeneous detection method was constructed for the detection of genomic DNA and Staphylococcus aureus (S. aureus), based on the noncovalent assembly of DNAzyme-labeled detection probe and single-walled carbon nanotubes (SWNTs). When the target genomic DNA and hemin was existed in the detection solution, the detection probe wrapped on the SWNTs by π-stacking interactions would keep away from SWNTs and form a DNAzyme-self-assembly construction. This DNAzyme construction could catalyze 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2?) and generate a colored product which could lead to the absorbance changes. Hence, according to its catalyzed capacity, the DNAzyme construction could amplify the detection signal. The concentration of target DNA could be quantified by exploiting their optical absorption changes at 414 nm and the concentration limit of detection of the method was 30 nM. And this detection method detected S. aureus quantitatively. In addition, this work proved that the method obtain higher detection sensitivity compared with the method without SWNTs because of the protection profile of SWNTs towards the detection probe.  相似文献   

10.
We experimentally demonstrate a label‐free biosensor for the ERBB2 cancer gene DNA target based on the distance‐dependent detection of surface‐enhanced fluorescence (SEF) on nanoporous gold disk (NPGD) plasmonic nanoparticles. We achieve detection of 2.4 zeptomole of DNA target on the NPGD substrate with an upper concentration detection limit of 1 nM. Without the use of molecular spacers, the NPGD substrate as an SEF platform was shown to provide higher net fluorescence for visible and NIR fluorophores compared to glass and non‐porous gold substrates. The enhanced fluorescence signals in patterned nanoporous gold nanoparticles make NPGD a viable material for further reducing detection limits for biomolecular targets used in clinical assays.

With patterned nanoporous gold disk (NPGD) plasmonic nanoparticles, a label‐free biosensor that makes use of distance‐dependent detection of surface‐enhanced fluorescence (SEF) is constructed and tested for zeptomole detection of ERBB2 cancer gene DNA targets.  相似文献   


11.
Pathogen detection is an important issue in human health due to the threats posed by severe communicable diseases. In the present study, to achieve efficient and accurate multiple detection of 11 selected pathogenic bacteria, we constructed a 16S rDNA oligonucleotide microarray containing doubly specific capture probes. Many target pathogens were specifically detected by the microarray with the aid of traditional perfect match‐based analysis using our previously proposed two‐dimensional visualization plot tool. However, some target species or subtypes were difficult to discriminate by perfect match analysis due to nonspecific binding of conserved 16S rDNA‐derived capture probes with high sequence similarity. We noticed that the patterns of specific spots for each strain were somewhat different in the two‐dimensional gradation plot. Therefore, to discriminate subtle differences between phylogenetically related pathogens, a pattern‐mapping statistical model was established using an artificial neural network algorithm trained by experimental repeats. The oligonucleotide microarray system harboring doubly specific capture probes combined with the pattern‐mapping analysis tool resulted in successful detection of all target pathogens including even subtypes of two closely related species showing strong nonspecific binding. Collectively, the results indicate that our novel combined system of a 16S rDNA‐based DNA microarray and a pattern‐mapping statistical analysis tool is a simple and effective method for detecting multiple pathogens. Biotechnol. Bioeng. 2010;106: 183–192. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD‐dependent methanol dehydrogenase (Mdh) variants, the rate‐limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross‐talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build‐up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy.  相似文献   

13.
Aim: To develop antibody–aptamer functionalized fibre‐optic biosensor for specific detection of Listeria monocytogenes from food products. Methods and Results: Aptamer, a single‐stranded oligonucleotide ligand that displays affinity for the target molecule, was used in the assay to provide sensor specificity. Aptamer‐A8, specific for internalin A, an invasin protein of L. monocytogenes, was used in the fibre‐optic sensor together with antibody in a sandwich format for detection of L. monocytogenes from food. Biotinylated polyclonal anti‐Listeria antibody, P66, was immobilized on streptavidin‐coated optical waveguide surface for capturing bacteria, and Alexa Fluor 647‐conjugated A8 was used as a reporter. The biosensor was able to selectively detect pathogenic Listeria in pure culture and in mixture with other bacteria at a concentration of approx. 103 CFU ml?1. This sensor also successfully detected L. monocytogenes cells from artificially contaminated (initial inoculation of 102 CFU 25 g?1) ready‐to‐eat meat products such as sliced beef, chicken and turkey after 18 h of enrichment. Conclusion: Based on the data presented in this study, the antibody–aptamer functionalized fibre‐optic biosensor could be used as a detection tool for sensitive and specific detection of L. monocytogenes from foods. Significance and Impact of the Study: The study demonstrates feasibility and novel application of aptamer on fibre‐optic biosensor platform for the sensitive detection of L. monocytogenes from food products.  相似文献   

14.
PCR-based Specific Detection of Ustilaginoidea virens and Ephelis japonica   总被引:1,自引:0,他引:1  
A PCR‐based technique for detection of clavicipitaceous pathogens in rice and related grasses was developed. The target pathogens were Ustilaginoidea virens, which causes rice false smut, and Ephelis japonica, which causes rice udbatta disease and black choke in grasses. To design specific primers, a comparison was made on genetic diversity on the rDNA internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene of U. virens, Ephelis japonica, as well as some other clavicipitaceous fungi. Each fungus was successfully detected by using a specific primer set with high sensitivity. Species‐specific primers designed here were capable of detecting these pathogens in plant tissues. The PCR detection was consistent with conventional histological observation. This nested PCR assay was sensitive and reliable for the detection of U. virens and E. japonica, and thus can be a used to study disease cycles and early prediction of false smut and udbatta‐disease incidence in fields.  相似文献   

15.
Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre‐existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target‐site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non‐chemical pest‐control methods.  相似文献   

16.
17.
A novel one-step electrochemical method for DNA detection is described. The procedure utilizes a reaction catalyzed by a peroxidase-mimicking DNAzyme to produce a product, which forms an insoluble precipitation layer on the surface of an electrode. A rationally designed forward primer, conjugated with a peroxidase DNAzyme complementary sequence at its 5′-end, is used for PCR amplification of target DNA. As a result, the DNAzyme sequence is produced by amplification only when the target DNA is present in the sample. The PCR product is then subjected to the precipitation reaction on the electrode surface using an electrolyte assay buffer containing 4-chloronaphthol, hydrogen peroxide, ferrocenemethanol, hemin, and 5′-lambdaexonuclease. Finally, analysis is carried out using Faradaic impedance spectroscopy. The impedance value was found to greatly increase when target DNA is present owing to the formation of a precipitation layer on the electrode surface caused by the catalytic action of the DNAzyme. In contrast, no impedance increase is observed when a control sample not containing target DNA is utilized. By employing this strategy, target DNA from Chlamydia trachomatis was reliably detected within a 10 min period following precipitation without the need for complicated secondary procedures. This effort has led to the development of a highly convenient electrochemical one-step method for DNA detection that utilizes a peroxidase-mimicking DNAzyme, which is specifically designed to undergo amplification during PCR of target DNA.  相似文献   

18.
We developed a novel method for the quantitative detection of the 16S rRNA of a specific bacterial species in the microbial community by using deoxyribozyme (DNAzyme), which possesses the catalytic function to cleave RNA in a sequence-specific manner. A mixture of heterogeneous 16S rRNA containing the target 16S rRNA was incubated with a species-specific DNAzyme. The cleaved target 16S rRNA was separated from the intact 16S rRNA by electrophoresis, and then their amounts were compared for the quantitative detection of target 16S rRNA. This method was used to determine the abundance of the 16S rRNA of a filamentous bacterium, Sphaerotilus natans, in activated sludge, which is a microbial mixture used in wastewater treatment systems. The result indicated that this DNAzyme-based approach would be applicable to actual microbial communities.  相似文献   

19.
A target‐primed in situ rolling circle amplification (in situ RCA) protocol was developed for detection of single‐copy genes inside bacterial cells and optimized with Pseudomonas stutzeri, targeting nitrite and nitrous oxide reductase genes (nirS and nosZ). Two padlock probes were designed per gene to target both DNA strands; the target DNA was cut by a restriction endonuclease close to the probe binding sites, which subsequently were made accessible by 5′‐3′ exonucleolysis. After hybridization, the padlock probe was circularized by ligation and served as template for in situ RCA, primed by the probe target site. Finally, the RCA product inside the cells was detected by standard fluorescence in situ hybridization (FISH). The optimized protocol showed high specificity and signal‐to‐noise ratio but low detection frequency (up to 15% for single‐copy genes and up to 43% for the multi‐copy 16S rRNA gene). Nevertheless, multiple genes (nirS and nosZ; nirS and the 16S rRNA gene) could be detected simultaneously in P. stutzeri. Environmental application of in situ RCA‐FISH was demonstrated on activated sludge by the differential detection of two types of nirS‐defined denitrifiers; one of them was identified as Candidatus Accumulibacter phosphatis by combining in situ RCA‐FISH with 16S rRNA‐targeted FISH. While not suitable for quantification because of its low detection frequency, in situ RCA‐FISH will allow to link metabolic potential with 16S rRNA (gene)‐based identification of single microbial cells.  相似文献   

20.
In the present study, we developed a highly sensitive and convenient biosensor consisting of gold nanoparticle(Au NP) probes and a gene chip to detect micro RNAs(mi RNAs). Specific oligonucleotides were attached to the glass surface as capture probes for the target mi RNAs, which were then detected via hybridization to the Au NP probes. The signal was amplified via the reduction of HAu Cl4 by H2O2. The use of a single Au NP probe detected 10 pmol L?1 of target mi RNA. The recovery rate for mi R-126 from fetal bovine serum was 81.5%–109.1%. The biosensor detection of mi R-126 in total RNA extracted from lung cancer tissues was consistent with the quantitative PCR(q PCR) results. The use of two Au NP probes further improved the detection sensitivity such that even 1 fmol L?1 of target mi R-125a-5p was detectable. This assay takes less than 1 h to complete and the results can be observed by the naked eye. The platform simultaneously detected lung cancer related mi R-126 and mi R-125a-5p. Therefore, this low cost, rapid, and convenient technology could be used for ultrasensitive and robust visual mi RNA detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号