首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 997 毫秒
1.
The recent discovery of fluorescent dyes for improving pathologic tissues identification has highlighted the need of robust methods for performance validation especially in the field of fluorescence‐guided surgery. Optical imaging of excised tissue samples is the reference tool to validate the association between dyes localization and the underlying histology in a controlled environment. Spectral unmixing may improve the validation process discriminating dye from endogenous signal. Here, an innovative spectral modeling approach that weights the spectral shifts associated with changes in chemical environment is described. The method is robust against spectral shift variations and its application leads to unbiased spectral weights estimates as demonstrated by numerical simulations. Finally, spectral shifts values computed pixel‐wise from spectral images are used to display additional information with potential diagnostic value.   相似文献   

2.
A false‐colored and merged image of fresh, ex vivo rat kidney acquired using an excitation‐scanning hyperspectral imaging system. The spectral image was acquired using excitation wavelengths from 360 to 550 nm. Colors represent principal components extracted from a spectral image cube featuring no added labels or markers. Further details can be found in the article by Peter F. Favreau, Joshua A. Deal, Bradley Harris, et al. ( e201900183 ).

  相似文献   


3.

Background

Living tissues contain a range of intrinsic fluorophores and sources of second harmonic generation which provide contrast that can be exploited for fresh tissue imaging. Microscopic imaging of fresh tissue samples can circumvent the cost and time associated with conventional histology. Further, intrinsic contrast can provide rich information about a tissue''s composition, structure and function, and opens the potential for in-vivo imaging without the need for contrast agents.

Methodology/Principal Findings

In this study, we used hyperspectral two-photon microscopy to explore the characteristics of both normal and diseased gastrointestinal (GI) tissues, relying only on their endogenous fluorescence and second harmonic generation to provide contrast. We obtained hyperspectral data at subcellular resolution by acquiring images over a range of two-photon excitation wavelengths, and found excitation spectral signatures of specific tissue types based on our ability to clearly visualize morphology. We present the two-photon excitation spectral properties of four major tissue types that are present throughout the GI tract: epithelium, lamina propria, collagen, and lymphatic tissue. Using these four excitation signatures as basis spectra, linear unmixing strategies were applied to hyperspectral data sets of both normal and neoplastic tissue acquired in the colon and small intestine. Our results show that hyperspectral unmixing with excitation spectra allows segmentation, showing promise for blind identification of tissue types within a field of view, analogous to specific staining in conventional histology. The intrinsic spectral signatures of these tissue types provide information relating to their biochemical composition.

Conclusions/Significance

These results suggest hyperspectral two-photon microscopy could provide an alternative to conventional histology either for in-situ imaging, or intraoperative ‘instant histology’ of fresh tissue biopsies.  相似文献   

4.
Standard fluorescence microscopy approaches rely on measurements at single excitation and emission bands to identify specific fluorophores and the setting of thresholds to quantify fluorophore intensity. This is often insufficient to reliably resolve and quantify fluorescent labels in tissues due to high autofluorescence. Here we describe the use of hyperspectral analysis techniques to resolve and quantify fluorescently labeled cells in highly autofluorescent lung tissue. This approach allowed accurate detection of green fluorescent protein (GFP) emission spectra, even when GFP intensity was as little as 15% of the autofluorescence intensity. GFP‐expressing cells were readily quantified with zero false positives detected. In contrast, when the same images were analyzed using standard (single‐band) thresholding approaches, either few GFP cells (high thresholds) or substantial false positives (intermediate and low thresholds) were detected. These results demonstrate that hyperspectral analysis approaches uniquely offer accurate and precise detection and quantification of fluorescence signals in highly autofluorescent tissues. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Current clinical brain imaging techniques used for surgical planning of tumor resection lack intraoperative and real‐time feedback; hence surgeons ultimately rely on subjective evaluation to identify tumor areas and margins. We report a fluorescence lifetime imaging (FLIm) instrument (excitation: 355 nm; emission spectral bands: 390/40 nm, 470/28 nm, 542/50 nm and 629/53 nm) that integrates with surgical microscopes to provide real‐time intraoperative augmentation of the surgical field of view with fluorescent derived parameters encoding diagnostic information. We show the functionality and safety features of this instrument during neurosurgical procedures in patients undergoing craniotomy for the resection of brain tumors and/or tissue with radiation damage. We demonstrate in three case studies the ability of this instrument to resolve distinct tissue types and pathology including cortex, white matter, tumor and radiation‐induced necrosis. In particular, two patients with effects of radiation‐induced necrosis exhibited longer fluorescence lifetimes and increased optical redox ratio on the necrotic tissue with respect to non‐affected cortex, and an oligodendroglioma resected from a third patient reported shorter fluorescence lifetime and a decrease in optical redox ratio than the surrounding white matter. These results encourage the use of FLIm as a label‐free and non‐invasive intraoperative tool for neurosurgical guidance.  相似文献   

6.
This paper presents an endoscopic configuration for measurements of tissue autofluorescence using two–photon excitation and time‐correlated single photon counting detection through a double‐clad photonic crystal fiber (DC‐PCF) without pre‐chirping of laser pulses. The instrument performance was evaluated by measurements of fluorescent standard dyes, biological fluorophores (collagen and elastin), and tissue specimens (muscle, cartilage, tendon). Current results demonstrate the ability of this system to accurately retrieve the fluorescence decay profile and lifetime of these samples. This simple setup, which offers larger penetration depth than one‐photon‐based techniques, may be combined with morphology‐yielding techniques such as photoacoustic and ultrasound imaging. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The ability to image living tissues with fluorescent proteins has revolutionized the fields of cell and developmental biology. Fusions between fluorescent proteins and various polypeptides are allowing scientists to image tissues with sub‐cellular resolution. Here, we describe the generation and activity of a genetically engineered mouse line expressing a fusion between the green fluorescent protein (GFP) and the apically localized protein Crumbs3 (Crb3). This reporter drives Cre‐inducible expression of Crb3–GFP under control of the EF1a regulatory domains. The fusion protein is broadly expressed in embryonic and adult tissues and shows apical restriction in the majority of epithelial cell types. It displays a variably penetrant gain of function activity in the neural tube. However, in several cell types, over‐expression of Crb3 does not appear to have any effect on normal development or maintenance. Detailed analysis of kidneys expressing this reporter indicates normal morphology and function highlighting the utility for live imaging. Thus, the EF1aCrb3–GFP mouse line will be of broad use for studying membrane and/or tissue dynamics in living tissues. genesis 53:285–293, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Fast functional and molecular photoacoustic microscopy requires pulsed laser excitations at multiple wavelengths with enough pulse energy and short wavelength‐switching time. Recent development of stimulated Raman scattering in optical fiber offers a low‐cost laser source for multiwavelength photoacoustic imaging. In this approach, long fibers temporally separate different wavelengths via optical delay. The time delay between adjacent wavelengths may eventually limits the highest A‐line rate. In addition, a long‐time delay in fiber may limit the highest pulse energy, leading to poor image quality. In order to achieve high pulse energy and ultrafast dual‐wavelength excitation, we present optical‐resolution photoacoustic microscopy with ultrafast dual‐wavelength excitation and a signal separation method. The signal separation method is validated in numerical simulation and phantom experiments. We show that when two photoacoustic signals are partially overlapped with a 50‐ns delay, they can be recovered with 98% accuracy. We apply this ultrafast dual‐wavelength excitation technique to in vivo OR‐PAM. Results demonstrate that A‐lines at two wavelengths can be successfully separated, and sO2 values can be reliably computed from the separated data. The ultrafast dual‐wavelength excitation enables fast functional photoacoustic microscopy with negligible misalignment among different wavelengths and high pulse energy, which is important for in vivo imaging of microvascular dynamics.  相似文献   

9.
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA‐FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co‐localization of miR2275 and a 24‐nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi‐photon fluorescence excitation microscopy can be used to separate the target sRNA‐FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA‐FISH signals can be imaged using super‐resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super‐resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step‐by‐step sRNA‐FISH protocol for studying sRNAs at the cellular and even subcellular level.  相似文献   

10.
For several decades, a multitude of studies have documented the ability of Raman spectroscopy (RS) to differentiate between tissue types and identify pathological changes to tissues in a range of diseases. Furthermore, spectroscopists have illustrated that the technique is capable of detecting disease‐specific alterations to tissue before morphological changes become apparent to the pathologist. This study draws comparisons between the information that is obtainable using RS alongside immunohistochemistry (IHC), since histological examination is the current GOLD standard for diagnosing a wide range of diseases. Here, Raman spectral maps were generated using formalin‐fixed, paraffin‐embedded colonic tissue sections from healthy patients and spectral signatures from principal components analysis (PCA) were compared with several IHC markers to confirm the validity of their localizations. PCA loadings identified a number of signatures that could be assigned to muscle, DNA and mucin glycoproteins and their distributions were confirmed with antibodies raised against anti‐Desmin, anti‐Ki67 and anti‐MUC2, respectively. The comparison confirms that there is excellent correlation between RS and the IHC markers used, demonstrating that the technique is capable of detecting compositional changes in tissue in a label‐free manner, eliminating the need for antibodies.   相似文献   

11.
In order to study physical relationships within tissue volumes or even organism‐level systems, the spatial distribution of multiple fluorescent markers needs to be resolved efficiently in three dimensions. Here, rather than acquiring discrete spectral images sequentially using multiple emission filters, a hyperspectral scanning laser optical tomography system is developed to obtain hyperspectral volumetric data sets with 2‐nm spectral resolution of optically transparent mesoscopic (millimeter‐centimeter) specimens. This is achieved by acquiring a series of point‐scanning hyperspectral extended depth of field images at different angles and subsequently tomographically reconstructing the 3D intensity distribution for each wavelength. This technique is demonstrated to provide robust measurements via the comparison of spectral and intensity profiles of fluorescent bead phantoms. Due to its enhanced spectral resolving ability, this technique is also demonstrated to resolve largely overlapping fluorophores, as demonstrated by the 3D fluorescence hyperspectral reconstruction of a dual‐labeled mouse thymus gland sample and the ability to distinguish tumorous and normal tissues of an unlabeled mouse intestine sample.   相似文献   

12.
This study characterizes the scatter‐specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross‐polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi‐illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide‐field imaging. Measurements in tissue‐simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter‐only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter‐based contrast achieved with HSF, CP and HSF‐CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter‐based contrast within images of tissue. The results suggest that visible CP‐HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality.   相似文献   

13.
Recent progress in three‐dimensional optical imaging techniques allows visualization of many comprehensive biological specimens. Optical clearing methods provide volumetric and quantitative information by overcoming the limited depth of light due to scattering. However, current imaging technologies mostly rely on the synthetic or genetic fluorescent labels, thus limits its application to whole‐body visualization of generic mouse models. Here, we report a label‐free optical projection tomography (LF‐OPT) technique for quantitative whole mouse embryo imaging. LF‐OPT is based on the attenuation contrast of light rather than fluorescence, and it utilizes projection imaging technique similar to computed tomography for visualizing the volumetric structure. We demonstrate this with a collection of mouse embryo morphologies in different stages using LF‐OPT. Additionally, we extract quantitative organ information applicable toward high‐throughput phenotype screening. Our results indicate that LF‐OPT can provide multi‐scale morphological information in various tissues including bone, which can be difficult in conventional optical imaging technique.  相似文献   

14.
Stimulated Raman scattering (SRS) microscopy is a label‐free method generating images based on chemical contrast within samples, and has already shown its great potential for high‐sensitivity and fast imaging of biological specimens. The capability of SRS to collect molecular vibrational signatures in bio‐samples, coupled with the availability of powerful statistical analysis methods, allows quantitative chemical imaging of live cells with sub‐cellular resolution. This application has substantially driven the development of new SRS microscopy platforms. Indeed, in recent years, there has been a constant effort on devising configurations able to rapidly collect Raman spectra from samples over a wide vibrational spectral range, as needed for quantitative analysis by using chemometric methods. In this paper, an SRS microscope which exploits spectral shaping by a narrowband and rapidly tunable acousto‐optical tunable filter (AOTF) is presented. This microscope enables spectral scanning from the Raman fingerprint region to the Carbon‐Hydrogen (CH)‐stretch region without any modification of the optical setup. Moreover, it features also a high enough spectral resolution to allow resolving Raman peaks in the crowded fingerprint region. Finally, application of the developed SRS microscope to broadband hyperspectral imaging of biological samples over a large spectral range from 800 to 3600 cm?1, is demonstrated.  相似文献   

15.
Assisted by the development of light excitation and measuring techniques and the commercial availability of highly sensitive equipment, luminescent labels are sensitive detection tools for life sciences research. By contrast to a wide variety of well established chromogenic techniques, fluorescent labels for detecting peroxidase (PO) have been confined to only a few substrates. We describe here novel fluorescent substrates of PO derived from heterocyclic 4-hydroxy styrenes as useful tools for detecting endogenous and exogenous targets in fixed cells and tissues. Excellent localization, high staining sensitivity, outstanding photostability, and exceptionally low background staining were achieved by optimizing the substrate through chemical synthesis. Structure/staining behavior relationships are discussed. By contrast to tyramine-fluorochrome conjugates employed in the catalyzed reporter deposition (CARD) technique, reporting and anchoring functions are no longer separated. Consequently, enzymatic cross-linking of the substrate yields an altered fluorochrome with different properties. Spectral properties and anchoring capability are interdependent and influenced by environmental effects and pH. We screened overall staining capability of 4-hydroxy styryl derivatives using an iterative semi-empirical approach, and ascertained optimal substitution patterns for high PO staining specificity and high fluorescence response. Reliable staining performance was achieved with alkyl chains of short or medium length at the positively charged nitrogen, whereas introducing polar groups often impaired the staining specificity of PO. Catalytic cross-linking of heterocyclic 4-hydroxy-styryl derivatives is a promising approach for permanent fluorescent staining of PO in fixed cells and tissues, and complements the CARD technique. Histochemical and immunohistochemical applications are presented using conventional and confocal fluorescence microscopes with different excitation sources. Spectral properties of selected stains are discussed. Novel stains also are of potential interest as “reactive-tracers” for living cells under multi-photon laser excitation conditions, because they exhibit pronounced nonlinear optical properties.  相似文献   

16.
We demonstrate an accurate quantitative characterization of absolute two‐ and three‐photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high‐brightness, cell‐specific two‐ and three‐photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two‐photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep‐tissue experiments.  相似文献   

17.
The multi‐spectral imaging technique has been used for distant mapping of in‐vivo skin chromophores by analyzing spectral data at each reflected image pixel and constructing 2‐D maps of the relative concentrations of oxy‐/deoxy‐haemoglobin and melanin. Instead of using a broad visible‐NIR spectral range, this study focuses on narrowed spectral band 500–700 nm, speeding‐up the signal processing procedure. Regression analysis confirmed that superposition of three Gaussians is optimal analytic approximation for the oxy‐haemoglobin absorption tabular spectrum in this spectral band, while superposition of two Gaussians fits well for deoxy‐haemoglobin absorption and exponential function – for melanin absorption. The proposed approach was clinically tested for three types of in‐vivo skin provocations: ultraviolet irradiance, chemical reaction with vinegar essence and finger arterial occlusion. Spectral range 500–700 nm provided better sensitivity to oxy‐haemoglobin changes and higher response stability to melanin than two reduced ranges 500–600 nm and 530–620 nm. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans’ high autofluorescence in the same spectral region as emission of DHE. We present a method to detect DHE selectively, based on its rapid bleaching kinetics compared to cellular autofluorescence. Worms were repeatedly imaged on an ultraviolet‐sensitive wide field (UV‐WF) microscope, and bleaching kinetics of DHE were fitted on a pixel‐basis to mathematical models describing the intensity decay. Bleach‐rate constants were determined for DHE in vivo and confirmed in model membranes. Using this method, we could detect enrichment of DHE in specific tissues like the nerve ring, the spermateca and oocytes. We confirm these results in C. elegans gut‐granule‐loss (glo) mutants with reduced autofluorescence and compare our method with three‐photon excitation microscopy of sterol in selected tissues. Bleach‐rate‐based UV‐WF imaging is a useful tool for genetic screening experiments on sterol transport, as exemplified by RNA interference against the rme‐2 gene coding for the yolk receptor and for worm homologues of Niemann‐Pick C disease proteins. Our approach is generally useful for identifying fluorescent probes in the presence of high cellular autofluorescence.  相似文献   

19.
Assisted by the development of light excitation and measuring techniques and the commercial availability of highly sensitive equipment, luminescent labels are sensitive detection tools for life sciences research. By contrast to a wide variety of well established chromogenic techniques, fluorescent labels for detecting peroxidase (PO) have been confined to only a few substrates. We describe here novel fluorescent substrates of PO derived from heterocyclic 4-hydroxy styrenes as useful tools for detecting endogenous and exogenous targets in fixed cells and tissues. Excellent localization, high staining sensitivity, outstanding photostability, and exceptionally low background staining were achieved by optimizing the substrate through chemical synthesis. Structure/staining behavior relationships are discussed. By contrast to tyramine-fluorochrome conjugates employed in the catalyzed reporter deposition (CARD) technique, reporting and anchoring functions are no longer separated. Consequently, enzymatic cross-linking of the substrate yields an altered fluorochrome with different properties. Spectral properties and anchoring capability are interdependent and influenced by environmental effects and pH. We screened overall staining capability of 4-hydroxy styryl derivatives using an iterative semi-empirical approach, and ascertained optimal substitution patterns for high PO staining specificity and high fluorescence response. Reliable staining performance was achieved with alkyl chains of short or medium length at the positively charged nitrogen, whereas introducing polar groups often impaired the staining specificity of PO. Catalytic cross-linking of heterocyclic 4-hydroxy-styryl derivatives is a promising approach for permanent fluorescent staining of PO in fixed cells and tissues, and complements the CARD technique. Histochemical and immunohistochemical applications are presented using conventional and confocal fluorescence microscopes with different excitation sources. Spectral properties of selected stains are discussed. Novel stains also are of potential interest as “reactive-tracers” for living cells under multi-photon laser excitation conditions, because they exhibit pronounced nonlinear optical properties.  相似文献   

20.
Short‐wave infrared hyperspectral imaging is applied to diagnose and monitor a case of allergic contact dermatitis (ACD) due to poison ivy exposure in one subject. This approach directly demonstrates increased tissue fluid content in ACD lesional skin with a spectral signature that matches the spectral signature of intradermally injected normal saline. The best contrast between the affected and unaffected skin is achieved through a selection of specific wavelengths at 1070, 1340 and 1605 nm and combining them in a pseudo‐red‐green‐blue color space. An image derived from these wavelengths normalized to unaffected skin defines a “tissue fluid index” that may aid in the quantitative diagnosis and monitoring of ACD. Further clinical testing of this promising approach towards disease detection and monitoring with tissue fluid content quantification is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号