首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ecologically significant symbiotic associations are frequently studied in isolation, but such studies of two-way interactions cannot always predict the responses of organisms in a community setting. To explore this issue, we adopt a community approach to examine the role of plant–microbial and insect–microbial symbioses in modulating a plant–herbivore interaction. Potato plants were grown under glass in controlled conditions and subjected to feeding from the potato aphid Macrosiphum euphorbiae. By comparing plant growth in sterile, uncultivated and cultivated soils and the performance of M. euphorbiae clones with and without the facultative endosymbiont Hamiltonella defensa, we provide evidence for complex indirect interactions between insect– and plant–microbial systems. Plant biomass responded positively to the live soil treatments, on average increasing by 15% relative to sterile soil, while aphid feeding produced shifts (increases in stem biomass and reductions in stolon biomass) in plant resource allocation irrespective of soil treatment. Aphid fecundity also responded to soil treatment with aphids on sterile soil exhibiting higher fecundities than those in the uncultivated treatment. The relative allocation of biomass to roots was reduced in the presence of aphids harbouring H. defensa compared with plants inoculated with H. defensa-free aphids and aphid-free control plants. This study provides evidence for the potential of plant and insect symbionts to shift the dynamics of plant–herbivore interactions.  相似文献   

2.
Microbial diversity was assessed in the soils of non-polluted rice fields of Central Rice Research Institute and Choudwar, and textile effluent contaminated (about 30 years) rice fields of Choudwar about 4 years after cessation of pollution. The soils contained 0.62–1.01 % organic C and 0.07–0.12 % total N, and measured 6.18–8.24 pH and 0.6–2.68 mS/cm Eh which were more in the polluted Choudwar soil. The microbial populations (×106 cfu/g soil) in the soils were: heterotrophs 1.21–10.9, spore formers 0.9–2.43, Gram (−)ve bacteria 4.11–8.0, nitrifiers 0.72–1.5, denitrifiers 0.72–2.43, phosphate solubilizers 0.14–0.9, asymbiotic nitrogen fixers 0.34–0.59, actinomycetes 0.07–0.11, fungi 0–0.5 and Bacillus thuringiensis (Bt) 0.4–0.61 which predominated in the polluted soil of Choudwar. The fungi were scarce in the polluted rice fields. The Bt isolates belonged to three motile and one non-motile group. Two motile Bt isolates were phenotyped as Bt subsp. sotto and israelensis, whereas, the non-motile isolate was Bt subsp. wahuensis. All Bt isolates produced extracellular protease, lipase and amylase enzymes. The microbial guilds had positive correlation among themselves, as well as, with soil physico-chemical characters but the fungi had negative relation and the nitrogen fixers were unrelated with the biotic and abiotic components.  相似文献   

3.
Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution.  相似文献   

4.
The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH4+-N per gram of soil) and high (200 μg NH4+-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil.  相似文献   

5.
德国鸢尾对Cd胁迫的生理生态响应及积累特性   总被引:1,自引:0,他引:1  
张呈祥  陈为峰 《生态学报》2013,33(7):2165-2172
通过盆栽研究了Cd胁迫下德国鸢尾的生长状况、生态效应、生理特性及吸收和富集Cd的能力.结果表明:德国鸢尾对小于5 mg/kg的Cd有较强的耐性,适用于城区土壤修复;Cd浓度大于5 mg/kg时抑制德国鸢尾生长,降低了其生态效应.随着Cd浓度的增大,德国鸢尾根系活力、叶绿素含量和含水量逐渐降低,游离脯氨酸和可溶性糖含量先升高后降低,细胞膜透性逐渐升高.Cd在德国鸢尾体内分布为根系>地上部分,随着Cd浓度的增大,德国鸢尾根系和地上部分Cd积累浓度逐渐升高、富集系数和转运系数逐渐降低;Cd浓度为20 mg/kg时德国鸢尾对Cd的积累量最大,为2.122 mg/plant.  相似文献   

6.
柠檬酸和EDTA对铜污染土壤环境中吊兰生长的影响   总被引:1,自引:0,他引:1  
汪楠楠  胡珊  吴丹  王友保 《生态学报》2013,33(2):631-639
通过盆栽试验研究了在铜污染条件下,柠檬酸和EDTA作为活化剂对铜污染土壤中吊兰生长状况的影响.结果表明,柠檬酸和EDTA对吊兰富集量的影响与其对土壤中铜的活化能力呈显著性正相关.柠檬酸对土壤铜有较强的活化作用,能够有效提高吊兰对铜的吸收,且在浓度为5mmol/L时效果最为明显,而较高的铜富集量又抑制了吊兰的生长;EDTA对吊兰富集能力的影响相对较弱,对吊兰的生长也无显著影响.相比而言,柠檬酸对铜污染土壤中吊兰生长状况的影响比EDTA大.  相似文献   

7.

Background and Aims

The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator.

Methods

Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria).

Key Results

In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon.

Conclusions

It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses'' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure.  相似文献   

8.
Plant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4‐year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine‐species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.  相似文献   

9.
Fast-growing hairy root cultures of Picrorhiza kurroa induced by Agrobacterium rhizogenes offers a potential production system for iridoid glycosides. In present study we have investigated the effects of various nutrient medium formulations viz B5, MS, WP and NN, and sucrose concentrations (1–8%) on the biomass and glycoside production of selected clone (14-P) of P. kurroa hairy root. Full strength B5 medium was found to be most suitable for maximum biomass yield on the 40th day of culture (GI = 32.72 ± 0.44) followed by the NN medium of the same strength (GI = 22.9 ± 0.43). Secondary metabolite production was 1.1 and 1.3 times higher in half strength B5 medium respectively in comparison to MS medium. Maximum biomass accumulation along with the maximum picroliv content was achieved with 4% sucrose concentration in basal medium. RT vitamin and Thiamine-HCl effected the growth and secondary metabolite production of hairy roots growing on MS medium but did not show any effect on other media. The pH of the medium played significant role in growth and secondary metabolite production and was found to be highest at pH 6.0 while lowest at pH 3.0 and pH 8.0. To enhance the production of biomass and Picroliv 5 liter working capacity bioreactor was used, 27-fold (324 g FW) higher growth was observed in bioreactor than shake flask and secondary metabolite production was similarly enhanced.  相似文献   

10.
The copper membrane monooxygenases (CuMMOs) are an important group of enzymes in environmental science and biotechnology. Areas of relevance include the development of green chemistry for sustainable exploitation of methane (CH4) reserves, remediation of chlorinated hydrocarbon contamination and monitoring human impact in the biogeochemical cycles of CH4 and nitrogen. Challenges for all these applications are that many aspects of the ecology, physiology and structure–function relationships in the CuMMOs are inadequately understood. Here, we describe genetic and physiological characterization of a novel member of the CuMMO family that has an unusual physiological substrate range (C2–C4 alkanes) and a distinctive bacterial host (Mycobacterium). The Mycobacterial CuMMO genes (designated hmoCAB) were amenable to heterologous expression in M. smegmatis—this is the first example of recombinant expression of a complete and highly active CuMMO enzyme. The apparent specific activity of recombinant cells containing hmoCAB ranged from 2 to 3 nmol min–1 per mg protein on ethane, propane and butane as substrates, and the recombinants could also attack ethene, cis-dichloroethene and 1,2-dichloroethane. No detectable activity of recombinants or wild-type strains was seen with methane. The specific inhibitor allylthiourea strongly inhibited growth of wild-type cells on C2–C4 alkanes, and omission of copper from the medium had a similar effect, confirming the physiological role of the CuMMO for growth on alkanes. The hydrocarbon monooxygenase provides a new model for studying this important enzyme family, and the recombinant expression system will enable biochemical and molecular biological experiments (for example, site-directed mutagenesis) that were previously not possible.  相似文献   

11.
12.

Background and Aims

Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism–environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant–soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root–soil interactions.

Methods

pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea.

Key Results

Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root–soil interactions.

Conclusions

This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.  相似文献   

13.
The abundance of Pratylenchus scribneri in soil and root habitats was compared in potato and corn plots during 1986-88. Nematodes were extracted from 100-cm³ soil samples and the roots contained within the samples. The percentage of the population recovered from soil, similar among years and crops, averaged ca. 50% at the beginning and end of the growing season and ca. 20% from early to late season. Proportionately more adults and fourth-stage juveniles than younger stages were located outside roots until harvest. In a related study, nematodes were isolated from the roots, root surfaces, and soil associated with roots of whole corn and potato plants sampled from the field. Nematode population estimates calculated from the whole plant samples were generally lower than those based on soil cores, but showed similar patterns of population growth. Nematode density per gram dry weight was highest in roots, intermediate on root surfaces, and lowest in soil. Estimates of the absolute abundance of nematodes in each of the three habitats were highest in roots or soil, depending on the sampling date, and lowest on root surfaces. This study demonstrates that P. scribneri inhabits soil environments even when host roots are present and illustrates the importance of considering all possible habitats when estimating the size of Pratylenchus spp. populations.  相似文献   

14.
Plantago ovata Forsk. (isabgol) is a valuable medicinal plant; its seeds and shell have a significant role in pharmacy as a laxative compound. Increasing soil contamination with cadmium (Cd) is one of the major concerns and is responsible for toxic effects in plants. This investigation was aimed to analyze the role of biofertilizers in alleviation of cadmium stress, given at the rate of 0, 50, and 100 mg kg−1 of soil. The plants of isabgol, were grown in pots with and without application of AM fungi and Azotobacter (alone and combination). Cadmium showed negative effect on growth and biochemical component whereas proline and MDA content increase with increasing cadmium concentration. Addition of bio-fertilizer showed better growth and higher pigment concentration under cadmium stress as compared to the control. The dual inoculation of AM fungi and Azotobacter was found to be the best in reduction of cadmium stress and promotion of growth parameters.  相似文献   

15.
Using a cuvette for simultaneous measurement of net photosynthesis in above ground plant organs and root respiration we investigated the effect of reduced leaf glucokinase activity on plant carbon balance. The gin2–1 mutant of Arabidopsis thaliana is characterized by a 50% reduction of glucokinase activity in the shoot, while activity in roots is about fivefold higher and similar to wild type plants. High levels of sucrose accumulating in leaves during the light period correlated with elevated root respiration in gin2–1. Despite substantial respiratory losses in roots, growth retardation was moderate, probably because photosynthetic carbon fixation was simultaneously elevated in gin2–1. Our data indicate that futile cycling of sucrose in shoots exerts a reduction on net CO2 gain, but this is over-compensated by the prevention of exaggerated root respiration resulting from high sucrose concentration in leaf tissue.  相似文献   

16.

Background and Aims

Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions.

Methods

Nitrogen was added to the soil at rates of 0, 0·5, 1·0, 3·0, 6·0 and 24·0 g N m−2 year−1. Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass.

Key Results

Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship.

Conclusions

These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.  相似文献   

17.
Cool humid weather enhanced development and reproduction of Ditylenchus dipsaci in alfalfa in laboratory and field studies in Utah. Relative humidity and nematode reproduction were positively correlated (P < 0.05), whereas air temperature and nematode reproduction were negatively correlated (P < 0.05). The greatest number of nematodes per gram of alfalfa tissue was found in nondormant Moapa alfalfa tissue at St. George during April, whereas the greatest numbers of nematodes were found in dormant Ranger alfalfa in June at West Jordan and Smithfield. There was 100% invasion of both resistant Lahontan and susceptible Ranger alfalfa plants at soil moisture levels of 61-94% field capacity. Fall burning of alfalfa to control weeds reduced, and spring burning increased, the incidence of invaded plants, nematodes per gram of plant tissue, and the mortality of susceptible Ranger (P < 0.01) and Moapa (P < 0.01) alfalfa plants over that of plants in nonburned control plots. Fall burning also reduced and spring burning increased the incidence of invaded plants (P < 0.05), but had no influence on nematodes per gram of plant tissue or the mortality of resistant Lahontan and Nevada Synthetic XX alfalfa over those of plants in control plots.  相似文献   

18.
三工河流域琵琶柴群落特征与土壤因子的相关分析   总被引:3,自引:0,他引:3  
琵琶柴(Reaumuria soongorica)是我国荒漠地区分布最广的地带性植被类型之一,对维系荒漠地区生态系统的稳定性具有重要作用。以三工河流域两个琵琶柴群落为对象,在2010年主要生长季节(6—10月),通过群落和土壤调查,采用土钻法、土柱法、地上收割法对两个琵琶柴群落的土壤性质、生物多样性、细根生物量、地上生物量、生物多样性与土壤性质的关系进行研究,结果表明:两个琵琶柴群落在冠幅、盖度、多度和物种多样性等方面均存在显著差异。在0—100 cm土壤层内,两个群落土壤电导率、pH值、容重、含水量存在显著差异。除土壤容重外,群落2各个土壤因子的值均大于群落1,并随土壤深度的增加表现出类似的趋势。两个群落物种多样性指数、地上生物量、细根生物量存在显著差异,从6月到10月呈现先下降再上升的趋势。由于7、8月群落1有大量夏雨型短命植物和类短命草本植物的出现,Shannon-Wiener多样性指数、Pielou均匀度指数急剧降低,Simpson指数表现出相反的变化趋势。群落2土壤电导率和pH值较高,草本植物鲜有出现,多样性指数和均匀度指数变化均较为平缓。两个群落的Sorenson相似性系数较低,群落差异明显。相关和回归分析表明土壤环境因子是导致两个琵琶柴群落特征、生物多样性和生物量不同的主要因素。较高的土壤含水量可以增加琵琶群落的生物多样性,较高的土壤容重抑制琵琶柴群落细根的生长,轻度的干旱胁迫促进地上生物量的积累,一定浓度的土壤pH值和土壤盐分可以促进琵琶柴群落细根的生长。  相似文献   

19.

Background and Aims

Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts.

Methods

Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering.

Key Results

There was substantial Cl and Na+ accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil.

Conclusions

The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur.  相似文献   

20.
喀斯特峰丛洼地土壤剖面微生物特性对植被和坡位的响应   总被引:6,自引:0,他引:6  
选取广西环江县喀斯特峰丛洼地:草丛(T)、灌丛(S)、原生林(PF)(中坡位)不同植被类型,原生林上、中、下不同坡位,按土壤发生层采集淋溶层(A层,0-10 cm)、过渡层(AB层,20-30 cm,草丛和灌丛;30-50 cm,原生林)、淀积层(B层,70-100cm)样品,研究土壤微生物量碳、氮(Soil microbial biomass carbon (SMBC)、soil microbial biomass nitrogen (SMBN))、微生物碳熵、氮熵(ratio of SMBC to soil organic carbon (qMBC)、ratio of SMBN to soil total nitrogen (qMBN))、土壤基础呼吸(soil basic respiration (SBR))以及代谢熵(microbial metabolic quotient(qCO2))的剖面分异特征及其影响因素.结果表明,植被、土层深度显著影响土壤微生物量及基础呼吸,随植被恢复,SMBC、SMBN、SBR由草丛、灌丛、原生林依次上升,并随土壤发生层位的加深逐渐减少,qCO2在3种植被类型间差异显著:T>PF>S;原生林A层SMBC,SMBN在各坡位间均显著高于AB层、B层,SBR在A层由下坡位至上坡位递减,而在AB和B层的上、下坡位间无显著差异,qCO2坡位间无显著差异(P>0.05);SMBC与SMBN之间存在显著正相关(r=0.825,P<0.01,n=45),且SMBC、SMBN、SBR分别与有机碳、全氮、碱解氮均呈显著正相关.因此,随植被恢复,土壤质量明显改善,且坡位对A层土壤的影响较AB层和B层更显著,对于维持土壤微生物调节的土壤养分循环功能,调控土壤氮素营养与土壤有机质同等重要,这为合理制订喀斯特生态恢复措施提供了理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号