共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bands in the ir and Raman spectra of L -valyl-glycyl-glycine (VGG) and VGG-ND have been assigned on the basis of a normal mode analysis of the known parallel-chain β-structure of this tripeptide. Amide I, II, III, and V mode shifts are obtained by the interactions of dipole derivatives in symmetry coordinates, referred to as dipole derivative coupling. These derivatives, obtained from ab initio studies, are also used to calculate ir intensities of amide I, II, and V modes. The agreement between predicted and observed frequencies and intensities is very good, providing confidence in the application of our force fields to the calculation of the vibrational modes of the general parallel-chain β-sheet structure (following paper). 相似文献
3.
The folding mechanism of cellular retinoic acid binding protein I (CRABP I), cellular retinol binding protein II (CRBP II), and intestinal fatty acid binding protein (IFABP) were investigated to determine if proteins with similar native structures have similar folding mechanisms. These mostly β-sheet proteins have very similar structures, despite having as little as 33% sequence similarity. The reversible urea denaturation of these proteins was characterized at equilibrium by circular dichroism and fluorescence. The data were best fit by a two-state model for each of these proteins, suggesting that no significant population of folding intermediates were present at equilibrium. The native states were of similar stability with free energies (linearly extrapolated to 0 M urea, ΔG) of 6.5, 8.3, and 5.5 kcal/mole for CRABP I, CRBP II, and IFABP, respectively. The kinetics of the folding and unfolding processes for these proteins was monitored by stopped-flow CD and fluorescence. Intermediates were observed during both the folding and unfolding of all of these proteins. However, the overall rates of folding and unfolding differed by nearly three orders of magnitude. Further, the spectroscopic properties of the intermediate states were different for each protein, suggesting that different amounts of secondary and/or tertiary structure were associated with each intermediate state for each protein. These data show that the folding path for proteins in the same structural family can be quite different, and provide evidence for different folding landscapes for these sequences. Proteins 33:107–118, 1998. © 1998 Wiley-Liss, Inc. 相似文献
4.
A 16-residue amphiphilic oligopeptide (EAK16) with every other residue alanine and also containing glutamic acid and lysine (Ac-NH-AEAEAKAKAEAEAKAK-CONH2) is able to form an unusually stable β-sheet structure. The β-sheet structure is stable at very low concentrations in water and at high temperatures. Various pH changes at 1.5, 3, 7, and 11 had little effect on the stability of the β-sheet structure. The β-sheet structure was not altered significantly even in the presence of 0.1% SDS, 7 molar guanidine hydrochloride, or 8 molar urea. One of the structural characteristics of the EAK16 is its ionic self-complementarity in that ionic bonds and hydrogen bonds between Glu and Lys can form readily between two oligopeptide β-sheet structures. This structural feature is probably one of the factors that promotes its extreme stability. This is the first example of such an extended ionic self-complementarity in a protein structure. EAK16 and its related peptides may have applications as useful biomaterials. It also offers a good model for studying the mechanism of β-sheet formation. Because the oligopeptide can self-assemble to form a membranous structure, it may have relevance to origin of life research. © 1994 John Wiley & Sons, Inc. 相似文献
5.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998 相似文献
6.
7.
A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome. © 1996 Wiley-Liss, Inc. 相似文献
8.
The study of complementary protein fragments is thought to be generally useful to identify early folding intermediates. A prerequisite for these studies is the reconstitution of the native-like structure by fragment complementation. Structural analysis of the complementation of the domain-sized proteolytic fragments of E. coli thioredoxin, using a combination of H-exchange and 2D NMR experiments as a fingerprint technique, provide evidence for the extensive reconstitution of a native β-sheet, with local conformational adjustments near the cleavage site. Remarkably, the antiparallel β-strand between the fragments shows a native-like protection of the amide protons to solvent exchange. Our results indicate that these fragments can be useful to study the early events in the still little understood formation of β-sheets. © 1995 Wiley-Liss, Inc. 相似文献
9.
We present a fully automatic structural classification of supersecondary structure units, consisting of two hydrogen-bonded β strands, preceded or followed by an α helix. The classification is performed on the spatial arrangement of the secondary structure elements, irrespective of the length and conformation of the intervening loops. The similarity of the arrangements is estimated by a structure alignment procedure that uses as similarity measure the root mean square deviation of superimposed backbone atoms. Applied to a set of 141 well-resolved nonhomologous protein structures, the classification yields 11 families of recurrent arrangements. In addition, fragments that are structurally intermediate between the families are found; they reveal the continuity of the classification. The analysis of the families shows that the α helix and β hairpin axes can adopt virtually all relative orientations, with, however, some preferable orientations; moreover, according to the orientation, preferences in the left/right handedness of the α–β connection are observed. These preferences can be explained by favorable side by side packing of the α helix and the β hairpin, local interactions in the region of the α–β connection or stabilizing environments in the parent protein. Furthermore, fold recognition procedures and structure prediction algorithms coupled to database-derived potentials suggest that the preferable nature of these arrangements does not imply their intrinsic stability. They usually accommodate a large number of sequences, of which only a subset is predicted to stabilize the motif. The motifs predicted as stable could correspond to nuclei formed at the very beginning of the folding process. Proteins 30:193–212, 1998. © 1998 Wiley-Liss, Inc. 相似文献
10.
Examination of crystal structures of restriction endonucleases EcoRI and EcoRV complexes with their cognate DNA revealed a common structural element, which forms the core of both proteins. This element consists of a five-stranded β-sheet and two α-helices packed against it and could be described as α–β sandwich in which helices and β-strands lie in two stacked layers. While the spatial structure of this α–β sandwich is conserved in both enzymes, there are no detectable similarities between amino acid sequences except of a few residues involved in active site formation. Probably, other restriction endonucleases which have similar organization of the active site might possess similar structural element regardless of DNA sequence recognized and recognition elements in the enzyme used. © 1994 Wiley-Liss, Inc. 相似文献
11.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol. 相似文献
12.
13.
A major bottleneck in the field of biochemistry is our limited understanding of the processes by which a protein folds into its native conformation. Much of the work on this issue has focused on the conserved core of the folded protein. However, one might imagine that a ubiquitous motif for unaided folding or for the recognition of chaperones may involve regions on the surface of the native structure. We explore this possibility by an analysis of the spatial distribution of regions with amphiphilic α-helical potential on the surface of β-sheet proteins. All proteins, Including β-sheet proteins, contain regions with amphiphilic α-helical potential. That is, any α-helix formed by that region would be amphiphilic, having both hydrophobic and hydrophilic surfaces. In the three-dimensional structure of all β-sheet proteins analyzed, we have found a distinct pattern in the spatial distribution of sequences with amphiphilic α-helical potential. The amphiphilic regions occur in ring shaped clusters approximately 20 to 30 Å in diameter on the surface of the protein. In addition, these regions have a strong preference for positively charged amino acids and a lower preference for residues not favorable to α-helix formation. Although the purpose of these amphiphilic regions which are not associated with naturally occurring α-helix is unknown, they may play a critical role in highly conserved processes such as protein folding. © 1996 Wiley-Liss, Inc. 相似文献
14.
Lisbeth Elster Uffe Kristiansen Darryl S. Pickering Richard W. Olsen Arne Schousboe 《Neurochemistry international》2001,38(7):17438
Two γ-aminobutyric acidA (GABAA) receptor chimeras were designed in order to elucidate the structural requirements for GABAA receptor desensitization and assembly. The (α1/γ2) and (γ2/α1) chimeric subunits representing the extracellular N-terminal domain of α1 or γ2 and the remainder of the γ2 or α1 subunits, respectively, were expressed with β2 and β2γ2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (α1/γ2)β2 and (α1/γ2)β2γ2 but not the (γ2/α1)β2 and (γ2/α1)β2γ2 subunit combinations formed functional receptor complexes as shown by whole-cell patch–clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (α1/γ2)-containing receptors was pronounced, as opposed to the staining of the (γ2/α1)-containing receptors, which was only slightly higher than background. To explain this, the (α1/γ2) and (γ2/α1) chimeras may act like α1 and γ2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (α1/γ2) chimeric subunit had characteristics different from the α1 subunit, since the (α1/γ2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch–clamp recordings, which was independent of whether the chimera was expressed in combination with β2 or β2γ2. Surprisingly, the (α1/γ2)(γ2/α1)β2 subunit combination did desensitize, indicating that the C-terminal segment of the α1 subunit may be important for desensitization. Moreover, desensitization was observed for the (α1/γ2)β2γ2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA. 相似文献
15.
Stephen P. Bottomley Isobel D. Lawrenson Deborah Tew Weiwen Dai James C. Whisstock Robert N. Pike 《Protein science : a publication of the Protein Society》2001,10(12):2518-2524
Serpins inhibit cognate serine proteases involved in a number of important processes including blood coagulation and inflammation. Consequently, loss of serpin function or stability results in a number of disease states. Many of the naturally occurring mutations leading to disease are located within strand 1 of the C beta-sheet of the serpin. To ascertain the structural and functional importance of each residue in this strand, which constitutes the so-called distal hinge of the reactive center loop of the serpin, an alanine scanning study was carried out on recombinant alpha(1)-antitrypsin Pittsburgh mutant (P1 = Arg). Mutation of the P10' position had no effect on its inhibitory properties towards thrombin. Mutations to residues P7' and P9' caused these serpins to have an increased tendency to act as substrates rather than inhibitors, while mutations at P6' and P8' positions caused the serpin to behave almost entirely as a substrate. Mutations at the P6' and P8' residues of the C beta-sheet, which are buried in the hydrophobic core in the native structure, caused the serpin to become highly unstable and polymerize much more readily. Thus, P6' and P8' mutants of alpha(1)-antitrypsin had melting temperatures 14 degrees lower than wild-type alpha(1)-antitrypsin. These results indicate the importance of maintaining the anchoring of the distal hinge to both the inhibitory mechanism and stability of serpins, the inhibitory mechanism being particularly sensitive to any perturbations in this region. The results of this study allow more informed analysis of the effects of mutations found at these positions in disease-associated serpin variants. 相似文献
16.
Adhesion to collagens by most cell types is mediated by the integrins α1β1 and α2β1. Both integrin α subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified α1β1 and α2β1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the α1 and α2 I domains in specific collagen adhesion. We find that introducing the α2 I domain into α1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (α1-2-1β1) is similar to the adhesion profile conferred by α2β1, not α1β1. The presence of α2 or α1-2-1 results in preferential binding to collagen I, whereas α1 expressing cells bind better to collagen IV. In addition, α1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas α2 or α1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by α2β1 or α1-2-1β1, but not by α1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins. J. Cell. Physiol. 176:634–641, 1998. © 1998 Wiley-Liss, Inc. 相似文献
17.
N. Anilkumar Amit K. Bhattacharya P.S. Manogaran Gopal Pande 《Journal of cellular biochemistry》1996,61(3):338-349
One of the hallmarks of cells undergoing mitotic division is their rounded morphology and reduced adhesion to the substratum. We have studied and compared the attachment of interphase and mitotic cells to substrata coated with fibronectin and vitronectin. We have found that adhesion of mitotic cells, as compared to interphase cells, is significantly reduced to fibronectin, but is higher to vitronectin. These results correlate well with the expression of α5β1 and αVβ3 integrins, the respective receptors for fibronectin and vitronectin, on the cell surface. Mitotic cells show higher levels of αVβ3 and very low levels of α5β1 proteins on the cell surface as compared to interphase cells. This difference in the levels of these integrins also reflects in the total amounts of fibronectin and vitronectin present on the cell surface of these cells. We have further shown, by flow cytometry, that binding of vitronectin, or the synthetic peptide-GRGDSP-, causes an increase in the intracellular levels of Ca2− in mitotic cells, but no change is seen in the interphase cells. Binding of fibronectin to either of these cells fails to elicit any response. One interesting feature of our results is that the levels of total, i.e., cytoplasmic plus membrane bound, α5β1 and αVβ3 integrins of mitotic and interphase cells remain the same, thus implying an alteration in the distribution of integrin chains between the plasma membrane and the cytoplasm during the conversion of interphase cells into the mitotic phase. © 1996 Wiley-Liss, Inc. 相似文献
18.
C. Michael DiPersio Kairbaan M. Hodivala-Dilke Rudolf Jaenisch Jordan A. Kreidberg Richard O. Hynes 《The Journal of cell biology》1997,137(3):729-742
Integrins α3β1 and α6β4 are abundant receptors on keratinocytes for laminin-5, a major component of the basement membrane between the epidermis and the dermis in skin. These integrins are recruited to distinct adhesion structures within keratinocytes; α6β4 is present in hemidesmosomes, while α3β1 is recruited into focal contacts in cultured cells. To determine whether differences in localization reflect distinct functions of these integrins in the epidermis, we studied skin development in α3β1-deficient mice. Examination of extracellular matrix by immunofluorescence microscopy and electron microscopy revealed regions of disorganized basement membrane in α3β1-deficient skin. Disorganized matrix was first detected by day 15.5 of embryonic development and became progressively more extensive as development proceeded. In neonatal skin, matrix disorganization was frequently accompanied by blistering at the dermal-epidermal junction. Laminin-5 and other matrix proteins remained associated with both the dermal and epidermal sides of blisters, suggesting rupture of the basement membrane itself, rather than detachment of the epidermis from the basement membrane as occurs in some blistering disorders such as epidermolysis bullosa. Consistent with this notion, primary keratinocytes from α3β1-deficient skin adhered to laminin-5 through α6 integrins. However, α3β1-deficient keratinocytes spread poorly compared with wild-type cells on laminin-5, demonstrating a postattachment requirement for α3β1 and indicating distinct roles for α3β1 and α6β4. Our findings support a novel role for α3β1 in establishment and/or maintenance of basement membrane integrity, while α6β4 is required for stable adhesion of the epidermis to the basement membrane through hemidesmosomes. 相似文献
19.
Alexey S. Gorovoy Olga Gozhina John‐Sigurd Svendsen George V. Tetz Anna Domorad Victor V. Tetz Tore Lejon 《Journal of peptide science》2013,19(10):613-618
Tuberculosis is still affecting millions of people worldwide, and new resistant strains of Mycobacterium tuberculosis are being found. It is therefore necessary to find new compounds for treatment. In this paper, we report the synthesis and in vitro testing of peptidyl β‐aminoboronic acids and β‐aminoboronates with anti‐tubercular activity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. 相似文献