首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Binding mode of Thioflavin T in insulin amyloid fibrils   总被引:1,自引:1,他引:0  
Amyloid fibrils share various common structural features and their presence can be detected by Thioflavin T (ThT). In this paper, the binding mode of ThT to insulin amyloid fibrils was examined. Scatchard analysis and isothermal titration calorimetry (ITC) showed at least two binding site populations. The binding site population with the strongest binding was responsible for the characteristic ThT fluorescence. This binding had a capacity of about 0.1 moles of ThT bound per mole of insulin in fibril form. The binding capacity was unaffected by pH, but the affinity was lowest at low pH. Notably, presence of a third binding process prior to the other processes was suggested by ITC. Binding of ThT resulted in only minor changes in the fibril structure according to the X-ray diffraction patterns, where a slightly more dominant equatorial reflection at 16A relative to the intersheet distance of 11A was observed. No change in the interstrand distance of 4.8A was observed. On the basis of our results, we propose that ThT binds in cavities running parallel to the fibril axis, e.g., between the protofilaments forming the fibrils. Such cavities have been proposed previously in insulin fibrils and several other amyloid fibril models.  相似文献   

2.
Real-time monitoring of fibril growth is essential to clarify the mechanism of amyloid fibril formation. Thioflavin T (ThT) is a reagent known to become strongly fluorescent upon binding to amyloid fibrils. Here, we show that, by monitoring ThT fluorescence with total internal reflection fluorescence microscopy (TIRFM), amyloid fibrils of beta2-microgobulin (beta2-m) can be visualized without requiring covalent fluorescence labeling. One of the advantages of TIRFM would be that we selectively monitor fibrils lying along the slide glass, so that we can obtain the exact length of fibrils. This method was used to follow the kinetics of seed-dependent beta2-m fibril extension. The extension was unidirectional with various rates, suggesting the heterogeneity of the amyloid structures. Since ThT binding is common to all amyloid fibrils, the present method will have general applicability for the analysis of amyloid fibrils. We confirmed this with the octapeptide corresponding to the C terminus derived from human medin and the Alzheimer's amyloid beta-peptide.  相似文献   

3.
The studies on the determination of the characteristics of the amyloid fibril interaction with the dye were based on the analysis of the dependence of the ThT fluorescence intensity on its concentration in the solution containing the amyloid fibrils. In the present work, we revealed that this intuitive approach provided erroneous data. We propose a new approach which provides a means for characterizing the interaction of thioflavin T (ThT) with amyloid fibrils and for determining the binding stoichiometry and binding constants, absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to the sites of different binding modes of fibrils. The key point of this approach is sample preparation by equilibrium microdialysis. The efficiency of the proposed approach is demonstrated via the examination of the ThT binding to insulin and Aβ42 fibrils as well as to the native form of the Electrophorus electricus acetylcholinesterase. We show that the peculiarities of ThT interaction with amyloid fibrils depend on the amyloidogenic protein and on the binding mode. This approach is universal and can be used for the analysis of binding mechanism of any dye that interacts with its receptor. Therefore, the proposed approach represents an important addition to the existing arsenal of means for the diagnostics and therapy of the neurodegenerative diseases.  相似文献   

4.
5.
Benzthiazole dye thioflavin T (ThT) is widely used to study the formation and structure of amyloid fibrils. Nevertheless, till now there is no common opinion concerning molecular mechanisms of ThT binding to amyloid fibrils and the reasons of dramatic increase in its fluorescence quantum yield on incorporation into amyloid fibrils. Our data prove that ThT molecules incorporate in the amyloid fibrils in the monomeric form and there is no ground to suppose the formation of ThT dimers, eximers, or micells. It was shown that the increase in the quantum yield of ThT incorporated in amyloid fibrils was caused by restriction of benzthiazole and aminobenzene rings torsion fluctuations relative to each other. The use of equilibrium microdialysis allowed determining the absorption spectrum, the number of binding modes of ThT with insulin amyloid fibrils and for each mode determining the binding constants and the number of binding sites for each mode.  相似文献   

6.
Amyloid fibrils are filamentous aggregates of peptides and proteins implicated in a range of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It has been known almost since their discovery that these β-sheet-rich proteinacious assemblies bind a range of specific dyes that, combined with other biophysical techniques, are convenient probes of the process of amyloid fibril formation. Two prominent examples of such dyes are Congo red (CR) and Thioflavin T (ThT). It has been reported that in addition to having a diagnostic role, CR is an inhibitor of the formation of amyloid structures, and these two properties have both been explained in terms of the same specific noncovalent interactions between the fibrils and the dye molecules. In this article, we show by means of quartz-crystal microbalance measurements that the binding of both ThT and CR to amyloid fibrils formed by the peptide whose aggregation is associated with Alzheimer's disease, Aβ(1-42), can be directly observed, and that the presence of CR interferes with the binding of ThT. Light scattering and fluorescence measurements confirm that an interaction exists between these dyes that can interfere with their ability to reflect accurately the quantity of amyloid material present in a given sample. Furthermore, we show that CR does not inhibit the process of amyloid fibril elongation, and therefore demonstrate the ability of the quartz-crystal microbalance method not only to detect and study the binding of small molecules to amyloid fibrils, but also to elucidate the mode of action of potential inhibitors.  相似文献   

7.
Amyloid fibrils are ordered β-sheet protein or peptide polymers. The benzothiazole dye Thioflavin-T (ThT) shows a strong increase in fluorescence upon binding to amyloid fibrils and has hence become the most commonly used amyloid-specific dye. In spite of this widespread use, the mechanism underlying specific binding and fluorescence enhancement upon interaction with amyloid fibrils remains largely unknown. Recent contradictory reports have proposed radically different modes of binding. We have studied the interaction of ThT with fibrils of the prion forming domain of the fungal HET-s prion protein assembled at pH 2 in order to try to gain some insight into the general mechanism of ThT-binding and fluorescence. We found that ThT does not bind to HET-s(218–289) fibrils as a micelle as previously proposed in the case of insulin fibrils. We have measured binding kinetics, affinity and stoichiometry at pH values above and below the pI of the HET-s(218–289) fibrils and found that binding is dramatically affected by pH and ionic strength. Binding is poor at acidic pH, presumably as a result of repulsive electrostatic interaction between the positively charged ThT molecule and the fibril surface. Finally, we found that ThT acquires chiral properties when it is fibril-bound. These results are discussed in relation to the different ThT-binding modes that have been proposed.  相似文献   

8.
Although the amyloid dye thioflavin-T (ThT) is among the most widely used tools in the study of amyloid fibrils, the mechanism by which ThT binds to fibrils and other β-rich peptide self-assemblies remains elusive. The development of the water-soluble peptide self-assembly mimic (PSAM) system has provided a set of ideal model proteins for experimentally exploring the properties and minimal dye-binding requirements of amyloid fibrils. PSAMs consist of a single-layer β-sheet (SLB) capped by two globular domains, which capture the flat, extended β-sheet features common among fibril-like surfaces. Recently, a PSAM that binds to ThT with amyloid-like affinity (low micromolar Kd) has been designed, and its crystal structure in the absence of bound ThT was determined. This PSAM thus provides a unique opportunity to examine the interactions of ThT with a β-rich structure. Here, we present molecular dynamics simulations of the binding of ThT to this PSAM β-sheet. We show that the primary binding site for ThT is along a shallow groove formed by adjacent Tyr and Leu residues on the β-sheet surface. These simulations provide an atomic-scale rationale for this PSAM's experimentally determined dye-binding properties. Together, our results suggest that an aromatic-hydrophobic groove spanning across four consecutive β-strands represents a minimal ThT binding site on amyloid fibrils. Grooves formed by aromatic-hydrophobic residues on amyloid fibril surfaces may therefore offer a generic mode of recognition for amyloid dyes.  相似文献   

9.
Today, the investigation of the structure of ordered protein aggregates-amyloid fibrils, the influence of the native structure of the protein and the external conditions on the process of fibrillation-is the subject of intense investigations. The aim of the present work is to study the kinetics of formation of insulin amyloid fibrils at low pH values (conditions that are used at many stages of the isolation and purification of the protein) using the fluorescent probe thioflavin T. It is shown that the increase of the fluorescence intensity of ThT during the formation of amyloid fibrils is described by a sigmoidal curve, in which three areas can be distinguished: the lag phase, growth, and a plateau, which characterize the various stages of fibril formation. Despite the variation in the length of the lag phase at the same experimental conditions (pH and temperature), it is seen to drop during solution stirring and seeding. Data obtained by electron microscopy showed that the formed fibrils are long, linear filaments ~20 nm in diameter. With increasing incubation time, the fibril diameter does not change, while the length increases to 2–3 μm, which is accompanied by a significant increase in the number of fibril aggregates. All the experimental data show that, irrespective of the kinetics of formation of amyloid fibrils, their properties after the completion of the fibrillation process are identical. The results of this work, together with the previous studies of insulin amyloid fibrils, may be important for clarification the mechanism of their formation, as well as for the treatment of amyloidosis associated with the aggregation of insulin.  相似文献   

10.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

11.
Human serum amyloid A (SAA) is a precursor protein of the amyloid fibrils that are responsible for AA amyloidosis. Of the four human SAA genotypes, SAA1 is most commonly associated with AA amyloidosis. Furthermore, SAA1 has three major isoforms (SAA1.1, 1.3, and 1.5) that differ by single amino acid variations at two sites in their 104-amino acid sequences. In the present study, we examined the effect of amino acid variations in human SAA1 isoforms on the amyloidogenic properties. All SAA1 isoforms adopted α-helix structures at 4 °C, but were unstructured at 37 °C. Heparin-induced amyloid fibril formation of SAA1 was observed at 37 °C, as evidenced by the increased thioflavin T (ThT) fluorescence and β-sheet structure formation. Despite a comparable increase in ThT fluorescence, SAA1 molecules retained their α-helix structures at 4 °C. At both temperatures, no essential differences in ThT fluorescence and secondary structures were observed among the SAA1 isoforms. However, the fibril morphologies appeared to differ; SAA1.1 formed long and curly fibrils, whereas SAA1.3 formed thin and straight fibrils. The peptides corresponding to the central regions of the SAA1 isoforms containing amino acid variations showed distinct amyloidogenicities, reflecting their direct effects on amyloid fibril formation. These findings may provide novel insights into the influence of amino acid variations in human SAA on the pathogenesis of AA amyloidosis.  相似文献   

12.
Yuan C  Berscheit HL  Huang AJ 《FEBS letters》2007,581(2):241-247
Mutations of keratoepithelin (KE) gene in human chromosome 5q31 have been linked with corneal epithelial or stromal dystrophies characterized by the abnormal deposits of amyloid fibrils and/or non-amyloid aggregations in corneal tissue. We report herein that synthetic peptide containing amino acid (a.a.) residues of 515-532 of native KE protein can readily form beta-sheet-containing amyloid fibrils in vitro. Amyloid fibrils formed in various conditions from short synthetic peptides (containing a.a. 515-532 and 515-525, respectively) were characterized by thioflavin T (ThT) fluorescence assay, Congo red staining, electron microscopy (EM) and circular dichroism (CD). Triple-N-methylation of the synthetic peptides prevented the beta-sheet polymerization and related amyloid fibril formation. Comparison study with ThT fluorescence further demonstrated that synthetic peptides containing corneal dystrophy-related mutations within this region formed amyloid fibrils to various extents. Our results suggest that each individual dystrophy-related mutation by itself does not necessarily potentiate amyloid fibril formation of KE. Roles of these intrinsically amyloidogenic foci in abnormal KE aggregations and amyloid deposits of stromal corneal dystrophies await further investigation.  相似文献   

13.
This work examines the effects of l-arginine (l-Arg) on the aggregation and amyloid fibrillation of bovine serum albumin (BSA). We demonstrate that l-Arg dose-dependently reduces thioflavin T (ThT) fluorescence of BSA within the l-Arg concentration range used (0–1.4 M). However, as revealed by electron microscopy, size exclusion chromatography, and dynamic light scattering results, l-Arg does not prevent amyloid-like fibril formation by BSA. We conclude that l-Arg competes against ThT for binding sites on BSA amyloid-like fibrils, leading to biased results in ThT fluorescence measurements. Moreover, the use of ThT fluorescence assay to screen for potential inhibitors against amyloid fibrillation can give misleading results.  相似文献   

14.
Thioflavin T is a benzothiazole dye that exhibits enhanced fluorescence upon binding to amyloid fibrils and is commonly used to diagnose amyloid fibrils, both ex vivo and in vitro. In aqueous solutions, thioflavin T was found to exist as micelles at concentrations commonly used to monitor fibrils by fluorescence assay ( approximately 10-20 microM). Specific conductivity changes were measured at varying concentration of thioflavin T and the critical micellar concentration was calculated to be 4.0+/-0.5 microM. Interestingly, changes in the fluorescence excitation and emission of thioflavin T were also dependent on the micelle formation. The thioflavin T micelles of 3 nm diameter were directly visualized using atomic force microscopy, and bound thioflavin T micelles were observed along the fibril length for representative fibrils. Increasing concentration of thioflavin T above the critical micellar concentration shows increased numbers of micelles bound along the length of the amyloid fibrils. Thioflavin T micelles were disrupted at low pH as observed by atomic force microscopy and fluorescence enhancement upon binding of thioflavin T to amyloid fibrils also reduced by several-fold upon decreasing the pH to below 3. This suggests that positive charge on the thioflavin T molecule has a role in its micelle formation that then bind the amyloid fibrils. Our data suggests that the micelles of thioflavin T bind amyloid fibrils leading to enhancement of fluorescence emission.  相似文献   

15.
Alzheimer??s disease (AD) is among the most important health-care problems in the world. The two pathological hallmarks of AD are extracellular neuritic amyloid plaques and intracellular neurofibrillary tangles. The aggregation of A?? and ??-sheet formation are considered to be the critical events which render these peptides neurotoxic. AD is affecting a large percentage of the elderly around the world. Many studies have been done on drugs to cure or at least slow Alzheimer??s disease. Most drugs produced for this disease aim at compensating for the performance of specific cell groups affected by the disease or restoring the function of these cells.This study examined the interaction of crocin, the main pigment of saffron, with the amyloid-?? peptides 1?+?40 (A?? 40) to determine the effects on peptide conformation and fibril formation using fluorescence spectroscopy, CD spectroscopy and electron microscopy. ThT data demonstrated the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of A??40. Incubation of pre-formed A??40 fibrils with crocin resulted in extensive lateral aggregation and precipitation of the fibrils. Consistent with this, electron microscopy data indicated that crocin decreased the number of fibrils formed and significantly reduced the average fibril length of A??40 as assessed by low levels of thioflavin T binding data. The mechanism by which, crocin prevented fibril formation was demonstrated by ANS binding assay and CD spectroscopy. In summary, crocin interacts with A?? peptides and prevents amyloid formation. This means that it has the potential to be an important therapeutic drug against AD.  相似文献   

16.
Pancreatic thiol proteinase inhibitor (PTPI), a variant of cystatin superfamily of cysteine protease inhibitors, has been isolated from pancreas of Capra hircus. In the present study, we examined the effects of acid denaturation and a co-solvent on PTPI with a focus on protein conformational changes and amyloid fibril formation. The results demonstrate that PTPI can form amyloid like fibrils. Acid denaturation as studied by CD and fluorescence spectroscopy showed that PTPI populates three partly unfolded species, a native like state at pH 3.0, a structured molten globule at pH 1.0 and partly unfolded species at pH 2.0, from each of which amyloid like fibrils grow as assessed by Thioflavin T (ThT) spectroscopy. Effect of trifluoroethanol (TFE) on acid induced states of PTPI was analyzed. TFE stabilized each of the three acid-induced intermediates at predenaturational concentrations (10%) and accelerated fibril formation. Morphology of the protein species at the beginning and end of reactions was observed using transmission electron microscopy. Solvent conditions were decisive for final fibril morphology. Biometals, Cu2+ and Zn2+ produced a concentration dependent decline in ThT fluorescence suggesting deaggregation of the fibrils. When added prior to amyloid fibril initiation 50 μM Cu2+ or 10 μM Zn2+ prevented any amyloid aggregation. Implications for therapeutics in view of Cu2+ and Zn2+ as essential micronutrients are suggested.  相似文献   

17.
Because understanding amyloid fibrillation in molecular detail is essential for development of strategies to control amyloid formation and overcome neurodegenerative disorders, increased understanding of present molecular probes as well as development of new probes are of utmost importance. To date, the binding modes of these molecular probes to amyloid fibrils are by no means adequately described or understood, and the large number of studies on Thioflavin T (ThT) and Congo Red (CR) binding have resulted in models that are incomplete and conflicting. Different types of binding sites are likely to be present in amyloid fibrils with differences in binding modes. ThT may bind in channels running parallel to the long axis of the fibril. In the channels, ThT may bind in either a monomeric or dimeric form of which the molecular conformation is likely to be planar. CR may bind in grooves formed along the β-sheets as a planar molecule in either a monomeric or supramolecular form.  相似文献   

18.
We showed that the genetically engineered carrier-protein albebetin and its biologically active constructs with interferon-alpha(2) octapeptide LKEKKYSP or differentiation factor hexapeptide TGENHR are inherently highly amyloidogenic at physiological pH. The kinetics of fibrillation were monitored by thioflavine-T (ThT) binding and the morphological changes by atomic force microscopy. Fibrillation proceeds via multiple pathways and includes a hierarchy of amyloid structures ranging from oligomers to protofilaments and fibrils. Comparative height and volume microscopic measurements allowed us to identify two distinct types of oligomeric intermediates: pivotal oligomers ca. 1.2 nm in height comprised of 10-12 monomers and on-pathway amyloid-competent oligomers ca. 2 nm in height constituted of 26-30 molecules. The former assemble into chains and rings with "bead-on-string morphology", in which a "bead" corresponds to an individual oligomer. Once formed, the rings and chains remain in solution simultaneously with fibrils. The latter give rise to protofilaments and fibrils, and their formation is concomitant with an increasing level of ThT binding. The amyloid nature of filamentous structures was confirmed by a pronounced ThT and Congo red binding and beta-sheet-rich far-UV circular dichroism. We suggest that transformation of the pivotal oligomers into the amyloid-prone ones is a limiting stage in amyloid assembly. Peptides, either fused to albebetin or added into solution, and an increased ionic strength promote fibrillation of albebetin (net charge of -12) by counterbalancing critical electrostatic repulsions. This finding demonstrates that the fibrillation of newly designed polypeptide-based products can produce multimeric amyloid species with a potentially "new" functionality, raising questions about their safety.  相似文献   

19.
The fluorescence of Nile red (9-diethylamino-5H-benzophenoxazine-5-one) is quenched in aqueous solutions but shows augmented fluorescence in hydrophobic environments. Nile red fluorescence was blue shifted and strongly augmented in the presence of various amyloid fibrils assayed under acidic as well as neutral pH conditions. Fibrils grown from lysozyme and insulin (at pH 1.6 and 65 °C), transthyretin (TTR) fibrils grown from the acid unfolded monomer (pH 2.0, 21 °C) or from the dissociated tetramer starting from native protein under less acidic conditions (pH 4.4, 37 °C) were detected. Nile red was also successfully employed in detecting Aβ1-42 and human prion protein (PrP90-231) amyloid fibrils grown at neutral pH. Nile red was amyloid fibril specific and did not fluoresce appreciably in the presence of the monomeric precursor proteins. Stoke's shifts of the wavelength maximum of Nile red bound to various fibrils were different (ranging from 615 nm to 638 nm) indicating sensitivity to the tertiary structure in its respective binding sites of different amyloid proteins. A polarity assay using ethanol-water mixtures and pure octanol ranging from dielectric constants between 10 and 70 showed a linear correlation of Nile red Stoke's shift and allowed assignment of amyloid fibril binding site polarity. Fluorescence resonance energy transfer between Thioflavin T (ThT) and Nile red was proven to be efficient and co-staining was employed to discriminate between conformational isoforms of Aβ1-42 amyloid fibrils grown under agitated and quiescent conditions. This paper demonstrates the complementary use of this fluorometric method for conformational typing of amyloid structures.  相似文献   

20.
A new approach for the determination of the amyloid fibril - thioflavin T (ThT) binding parameters (the number of binding modes, stoichiometry, and binding constants of each mode) is proposed. This approach is based on the absorption spectroscopy determination of the concentration of free and bound to fibril dye in solutions, which are prepared by equilibrium microdialysis. Furthermore, the proposed approach allowed us, for the first time, to determine the absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to fibril by each binding modes. This approach is universal and can be used for determining the binding parameters of any dye interaction with a receptor, such as ANS binding to proteins in the molten globule state or to protein amorphous aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号