首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this process and by interacting with Blinkin, link the SAC with the kinetochore, the macromolecular assembly that connects microtubules with centromeric DNA. Here, we identify the Blinkin motif critical for interaction with BUBR1, define the stoichiometry and affinity of the interaction, and present a 2.2 ? resolution crystal structure of the complex. The structure defines an unanticipated BUBR1 region responsible for the interaction and reveals a novel Blinkin motif that undergoes a disorder-to-order transition upon ligand binding. We also show that substitution of several BUBR1 residues engaged in binding Blinkin leads to defects in the SAC, thus providing the first molecular details of the recognition mechanism underlying kinetochore-SAC signaling.  相似文献   

2.
Human BUBR1 is a 120 kDa protein that plays a central role in the spindle assembly checkpoint (SAC), the evolutionary conserved and self-regulatory system of higher organisms that monitors and repairs defects in chromosome segregation in mitotic cells. BUBR1 is organised into several domains, with an N-terminal region responsible for its localisation into the kinetochore, the multi-component proteinaceous network that assembles onto chromosomes upon mitotic entry. We have expressed and purified uniformly-15N/13C N-terminal BUBR1 and assigned backbone and side-chain resonances bound to an unlabelled peptide from the protein Blinkin, an element essential for recruitment of BUBR1 to the kinetochore. These assignments provide insights on the Blinkin interaction interface and form the basis of the three-dimensional structure determination of a BUBR1-Blinkin complex.  相似文献   

3.

Background

In eukaryotes, the spindle assembly checkpoint (SAC) ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the spindle.

Methodology/Principal Findings

We investigated the mechanism underlying this surveillance mechanism in plants, by characterising the orthogolous SAC proteins BUBR1, BUB3 and MAD2 from Arabidopsis. We showed that the cell cycle-regulated BUBR1, BUB3.1 and MAD2 proteins interacted physically with each other. Furthermore, BUBR1 and MAD2 interacted specifically at chromocenters. Following SAC activation by global defects in spindle assembly, these three interacting partners localised to unattached kinetochores. In addition, in cases of ‘wait anaphase’, plant SAC proteins were associated with both kinetochores and kinetochore microtubules. Unexpectedly, BUB3.1 was also found in the phragmoplast midline during the final step of cell division in plants.

Conclusions/Significance

We conclude that plant BUBR1, BUB3.1 and MAD2 proteins may have the SAC protein functions conserved from yeast to humans. The association of BUB3.1 with both unattached kinetochore and phragmoplast suggests that in plant, BUB3.1 may have other roles beyond the spindle assembly checkpoint itself. Finally, this study of the SAC dynamics pinpoints uncharacterised roles of this surveillance mechanism in plant cell division.  相似文献   

4.
Chromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution, followed by parallel subfunctionalization in which preservation of the ancestral, amino-terminal KEN box or kinase domain was mutually exclusive. In one exception, vertebrate BUBR1-defined by the KEN box-preserved the kinase domain but allowed nonconserved degeneration of catalytic motifs. Although BUBR1 evolved to a typical pseudokinase in some vertebrates, it retained the catalytic triad in humans. However, we show that putative catalysis by human BUBR1 is dispensable for error-free chromosome segregation. Instead, residues that interact with ATP in conventional kinases are essential for conformational stability in BUBR1. We propose that parallel evolution of BUBR1 orthologs rendered its kinase function dispensable in vertebrates, producing an unusual, triad-containing pseudokinase.  相似文献   

5.
The spindle checkpoint control mechanism functions to ensure faithful chromosome segregation by delaying cell division until all chromosomes are correctly oriented on the mitotic spindle. Initially identified in budding yeast, several mammalian spindle checkpoint-associated proteins have recently been identified and partially characterized. These proteins associate with all active human centromeres, including neocentromeres, in the early stages of mitosis prior to the commencement of anaphase. We have examined the status of proteins associated with the checkpoint protein complex (BUB1, BUBR1, BUB3, MAD2), the anaphase-promoting complex (Tsg24, p55CDC), and other proteins associated with mitotic checkpoint control (ERK1, 3F3/2 epitope, hZW10), on a human dicentric chromosome. Each of these proteins was found to specifically associate with only the active centromere, suggesting that only active centromeres participate in the spindle checkpoint. This finding complements previous studies on multicentric chromosomes demonstrating specific association of structural and motor-related centromere proteins with active centromeres, and suggests that centromere inactivation is accompanied by loss of all functionally important centromere proteins.  相似文献   

6.
Biallelic and heterozygous mutations of the BUB1B gene have been reported in mosaic variegated aneuploidy (MVA), a rare disorder characterized by constitutional mosaic aneuploidies associated to severe intrauterine growth retardation, microcephaly and, in most cases, to premature chromatid separation (PCS), highlighting the key role of human BUBR1 in chromosome segregation. To study the consequences of gradual reduction of the BUBR1 protein levels, inhibition of BUB1B expression in model cells was induced using short hairpin RNAs (shRNAs). We obtained stable shRNA-transduced HeLa cells displaying a gradient of residual BUBR1 protein (8.5, 10, 14, 58, and 77%), mimicking the situation of patients’ cells harboring one or two BUB1B mutations. Induction of PCS was detected in all transduced cells and its level was correlated to the decrease of BUBR1. Aneuploidy was clearly detected in cells with residual BUBR1 below 50%. Our data demonstrate that the function of the human BUBR1 protein in the spindle checkpoint is remarkably dosage-dependent and that the biological consequences of BUB1B expression reduction on premature chromatid separation and aneuploidy depend on the residual amount of BUBR1. This provides a biological explanation for the mode of inheritance of PCS, which is dominant, and of MVA, which can be recessive in some families and result from the combination of a null allele associated to a common hypomorphic allele in others.  相似文献   

7.
The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC), which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID) display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization.  相似文献   

8.
Eukaryotic cells have evolved a mechanism that delays the progression of mitosis until condensed chromosomes are properly positioned on the mitotic spindle. To understand the molecular basis of such monitoring mechanism in human cells, we have been studying genes that regulate the mitotic checkpoint. Our early studies have led to the cloning of a full-length cDNA encoding MAD3-like protein (also termed BUBR1/MAD3/SSK1). Dot blot analyses show that BUBR1 mRNA is expressed in tissues with a high mitotic index but not in differentiated tissues. Western blot analyses show that in asynchronous cells, BUBR1 protein primarily exhibits a molecular mass of 120 kDa, and its expression is detected in most cell lines examined. In addition, BUBR1 is present during various stages of the cell cycle. As cells enter later S and G2, BUBR1 levels are increased significantly. Nocodazole-arrested mitotic cells obtained by mechanical shake-off contain BUBR1 antigen with a slower mobility on denaturing SDS gels. Phosphatase treatment restores the slowly migrating band to the interphase state, indicating that the slow mobility of the BUBR1 antigen is attributable to phosphorylation. Furthermore, purified recombinant His6-BUBR1 is capable of autophosphorylation. Our studies indicate that BUBR1 phosphorylation status is regulated during spindle disruption. Considering its strong homology to BUB1 protein kinase, BUBR1 may also play an important role in mitotic checkpoint control by phosphorylation of a critical cellular component(s) of the mitotic checkpoint pathway.  相似文献   

9.
Background information. The role of the LIM‐domain‐containing protein Ajuba was initially described in cell adhesion and migration processes and recently in mitosis as an activator of the Aurora A kinase. Results. In the present study, we show that Ajuba localizes to centrosomes and kinetochores during mitosis. This localization is microtubule‐dependent and Ajuba binds microtubules in vitro. A microtubule regrowth assay showed that Ajuba follows nascent microtubules from centrosomes to kinetochores. Owing to its contribution to mitotic commitment and its microtubule‐dependent localization, Ajuba could also play a role during the metaphase—anaphase transition. We show that Ajuba interacts with Aurora B and BUBR1 [BUB (budding uninhibited by benomyl)‐related 1], two major components of the mitotic checkpoint. Inhibition of BUBR1 by siRNA (small interfering RNA) disrupts chromosome alignment at the metaphase plate and modifies Ajuba localization due to premature mitotic exit. Conclusions. Ajuba is a microtubule‐associated protein that collaborates with Aurora B and BUBR1 at the metaphase—anaphase transition and this may be important to ensure proper chromosome segregation.  相似文献   

10.
Fidelity of chromosome segregation is monitored by the spindle assembly checkpoint (SAC). Key components of the SAC include MAD1, MAD2, BUB1, BUB3, BUBR1, and MPS1. These proteins accumulate on kinetochores in early prometaphase but are displaced when chromosomes attach to microtubules and/or biorient on the mitotic spindle. As a result, stable attachment of the final chromosome satisfies the SAC, permitting activation of the anaphase promoting complex/cyclosome (APC/C) and subsequent anaphase onset. SAC satisfaction is reversible, however, as addition of taxol during metaphase stops cyclin B1 degradation by the APC/C. We now show that targeting MAD1 to kinetochores during metaphase is sufficient to reestablish SAC activity after initial silencing. Using rapamycin-induced heterodimerization of FKBP-MAD1 to FRB-MIS12 and live monitoring of cyclin B1 degradation, we show that timed relocalization of MAD1 during metaphase can stop cyclin B1 degradation without affecting chromosome-spindle attachments. APC/C inhibition represented true SAC reactivation, as FKBP-MAD1 required an intact MAD2-interaction motif and MPS1 activity to accomplish this. Our data show that MAD1 kinetochore localization dictates SAC activity and imply that SAC regulatory mechanisms downstream of MAD1 remain functional in metaphase.  相似文献   

11.
Corrigendum     
FBW7 (F-box and WD repeat domain containing 7), also known as FBXW7 or hCDC4, is a tumor suppressor gene mutated in a broad spectrum of cancer cell types. As a component of the SCF E3 ubiquitin ligase, FBW7 is responsible for specifically recognizing phosphorylated substrates, many important for tumor progression, and targeting them for ubiquitin-mediated degradation. Although the role of FBW7 as a tumor suppressor is well established, less well studied is how FBW7-mutated cancer cells might be targeted for selective killing. To explore this further, we undertook a genome-wide RNAi screen using WT and FBW7 knockout colorectal cell lines and identified the spindle assembly checkpoint (SAC) protein BUBR1, as a candidate synthetic lethal target. We show here that asynchronous FBW7 knockout cells have increased levels of mitotic APC/C substrates and are sensitive to knockdown of not just BUBR1 but BUB1 and MPS1, other known SAC components, suggesting a dependence of these cells on the mitotic checkpoint. Consistent with this dependence, knockdown of BUBR1 in cells lacking FBW7 results in significant cell aneuploidy and increases in p53 levels. The FBW7 substrate cyclin E was necessary for the genetic interaction with BUBR1. In contrast, the establishment of this dependence on the SAC requires the deregulation of multiple substrates of FBW7. Our work suggests that FBW7 knockout cells are vulnerable in their dependence on the mitotic checkpoint and that this may be a good potential target to exploit in FBW7-mutated cancer cells.  相似文献   

12.
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate (chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 (hSPC25) and human SPC24 (hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 (human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference-mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.  相似文献   

13.
Silencing of the spindle assembly checkpoint involves two protein phosphatases, PP1 and PP2A-B56, that are thought to extinguish checkpoint signaling through dephosphorylation of a checkpoint scaffold at kinetochores. In this issue, Cordeiro et al. (2020. J. Cell Biol. https://doi.org/10.1083/jcb.202002020) now show that a critical function of these phosphatases in checkpoint silencing is removal of Polo kinase at kinetochores, which would otherwise autonomously sustain the checkpoint.

The main goal of mitosis is to accurately segregate chromosomes, such that each daughter cell inherits a full complement of genetic information. To accomplish this delicate task, once each chromosome is faithfully duplicated through DNA replication, its identical sister chromatids must attach to spindle microtubules coming from opposite spindle poles through a process known as chromosome biorientation. Kinetochores are proteinaceous assemblies that reside at the centromeric region of chromosomes and are key to this process by capturing spindle microtubules (1). Microtubule capture, however, is inherently error prone, and several cycles of attachment/detachment are often required before chromosomes achieve biorientation. Obviously, chromosome segregation without error correction would be highly detrimental, leading to unbalanced chromosome numbers, referred to as aneuploidies, which are hallmarks of cancer and genetic diseases. Luckily, eukaryotic cells not only possess an error-correction machinery deputed to rectify faulty attachments (2), but they also have a safeguard device, called the spindle assembly checkpoint (SAC), that temporarily halts cells in mitosis to provide them with the necessary time window to fix the errors. SAC signaling fires at unattached kinetochores, which are continuously generated during error correction, and is extinguished once all chromosomes are bioriented, thus resuming mitotic progression and chromosome segregation (3).Prevailing models posit that a key trigger of SAC signaling is the phosphorylation of the kinetochore scaffold KNL1 by the SAC kinase MPS1. This creates a phospho-docking site at the MELT repeats (amino acid consensus Met-Glu-Leu-Thr) of KNL1 that recruits the heterotetrameric SAC complex BUB1:BUB3:BUB3:BUBR1 (referred to as BUB complex; Fig. 1), which in turn attracts to the kinetochore other SAC proteins that collectively prevent mitotic progression (3).Open in a separate windowFigure 1.The interplay of SAC kinases and phosphatases at kinetochores. When SAC is activated at an unattached kinetochore (SAC on), MPS1 phosphorylates the kinetochore scaffold KNL1, thereby recruiting the BUB complex. Contextually, CDK1-dependent phosphorylation of BUB1 and BUBR1 generates phospho-docking sites for recruitment of the Polo kinase PLK1, which on one side sustains KNL1 phosphorylation and on the other stimulates BUBR1 binding to PP2A-B56. The latter, in turn, counteracts PLK1 local activity by dislodging PLK1 from the kinetochore. During SAC silencing, local activity of MPS1 is shut off. Additionally, the PP1 phosphatase binds to KNL1 and, together with PP2A-B56, further evicts PLK1 from the kinetochore, possibly through dephosphorylation of its phospho-docking sites in BUB1 and BUBR1. This leads to KNL1 dephosphorylation and displacement of the BUB complex, thus extinguishing SAC signaling (SAC off). Whether PP1 and PP2A-B56, as opposed to other phosphatases, contribute directly to KNL1 dephosphorylation remains an open question.The protein phosphatases PP1 and PP2A-B56 are recruited to kinetochores through binding to KNL1 and BUBR1, respectively, and are thought to silence the SAC through dephosphorylation of the MELT repeats of KNL1, thus antagonizing MPS1 activity (Fig. 1). Additional mechanisms, such as MPS1 inhibition and stripping of SAC components from kinetochores, have been proposed to contribute to obliterate SAC signaling upon chromosome biorientation (4).In this issue, compelling evidence from Cordeiro et al. challenges the current view by showing that rather than dephosphorylating KNL1, PP1 and PP2A-B56 actually silence the SAC by down-regulating the activity of Polo kinase (PLK1 in human cells) at kinetochores (5). Polo kinase and MPS1 share a common substrate preference and both can phosphorylate the MELT repeats of KNL1. Additionally, Polo cooperates with MPS1 in SAC signaling in various species, while in organisms where MPS1 is absent, like nematodes, Polo functionally replaces MPS1 (6).Consistent with previous results (7, 8), Cordeiro et al. show that when kinetochore phosphatases are dampened, PLK1 levels increase at kinetochores through an unknown mechanism, which might involve dephosphorylation of the phosphoepitopes in the Polo-binding motifs generated on the BUB complex by CDK1 (BUB1-pT609 and BUBR1-pT620; 9, 10, 11). This implies that when PP1 and PP2A-B56 are low at kinetochores, PLK1 can amplify SAC signaling through a positive feedback loop by boosting KNL1 phosphorylation independently of Mps1, thereby recruiting the BUB complex and, in turn, increasing amounts of PLK1 (Fig. 1). In agreement with this view, in a sensitized setup where kinetochore phosphatases are crippled along with MPS1, concomitant inhibition of PLK1 is sufficient to bring about KNL1 dephosphorylation and restore SAC signaling. These data led the authors to the provocative conclusion that the primary role of PP1 and PP2A-B56 in SAC silencing is to harness PLK1 activity. This new model is appealing not only because it highlights a novel function for PP1 and PP2A-B56 in SAC silencing, but also because it explains the modest effects that are commonly observed on SAC signaling upon PLK1 inhibition alone. Indeed, kinetochore phosphatases, and primarily PP2A-B56 (12), are already partially active in a SAC-induced mitotic arrest (e.g., upon microtubule depolymerization), as shown here by the increased KNL1 phosphorylation upon their inactivation.Interestingly, sequence alignment of BUB1 and BUBR1 homologues across the phylogenetic tree reveals that, in metazoans, putative Polo-binding motifs are usually located in the vicinity of hypothetical PP2A-B56–binding motifs, suggesting that they coevolved. The physical proximity of Polo-binding and PP2A-B56–binding motifs in BUB1 and BUBR1 could position the Polo-binding motifs in a favorable arrangement for their PP2A-B56–driven dephosphorylation and, as a consequence, PLK1 clearance from kinetochores (Fig. 1).The data by Cordeiro et al. represent a paradigm shift in our understanding of SAC silencing for two main reasons. First, consistent with published data (13, 14), PP1 and PP2A-B56 might be involved in this process primarily by inactivating upstream SAC kinases (MPS1 and PLK1), rather than dephosphorylating their substrates. Second, since PLK1 is partially displaced from kinetochores by the above phosphatases already during a SAC arrest, MPS1 inactivation might be the main trigger of SAC silencing. Several mechanisms have been proposed to attenuate MPS1 activity once the SAC is satisfied, such as MPS1 displacement from kinetochores (6) and dephosphorylation of MPS1 in its activation loop (13, 14).The new model raises a burning question: If PP1 and PP2A do not dephosphorylate KNL1 at MELT repeats, what does? Other phosphatases, whose identity remains elusive, could be involved in KNL1 dephosphorylation. Alternatively, phosphorylated KNL1 might be actively turned over at kinetochores. Nevertheless, at present, the involvement of PP1 and PP2A-B56 in KNL1 dephosphorylation cannot be ruled out, as complete inhibition of kinetochore phosphatases in the experimental setup used here is likely very challenging. Further investigations will be required to solve this central issue.Another important question that deserves further scrutiny is, how exactly do PP1 and PP2A-B56 inhibit PLK1 activity at kinetochores? Cordeiro et al. propose that they could dephosphorylate the Polo-binding motifs in BUB1/BUBR1. Alternatively, the close proximity of PP2A- and Polo-binding motifs in metazoan BUBR1 homologues could make the association of PLK1 and PP2A with BUBR1 mutually exclusive.Finally, and most importantly, what is the physiological meaning of the complex interplay between SAC kinases and phosphatases described here? A crucial function of PLK1 bound to the BUB complex in human cells is to stabilize kinetochore-microtubule attachments in prometaphase by recruiting PP2A-B56 through phosphorylation of the PP2A-B56-binding motif in BUBR1 (15). In turn, eviction of PLK1 from kinetochores by PP2A-B56 will have two major outputs: (i) maintain microtubule dynamics at bioriented chromosomes (8) and (ii) stimulate binding of PP1 to KNL1, which primes the system for SAC silencing (16). As soon as MPS1 levels drop at kinetochores and/or other phosphatases intervene to dephosphorylate KNL1, SAC signaling is finally extinguished. The development of fluorescence-based biosensors combined with mathematical modeling will certainly provide in the future further mechanistic insights into such intricate network.  相似文献   

14.
In this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole. Furthermore, EDD siRNA reduced mitotic cell viability and, in nocodazole-treated cells, increased expression of the promitotic progression protein cell division cycle 20 (CDC20). Copurification studies also identified physical interactions with CDC20, BUBR1, and other components of the SAC. Taken together, these observations highlight the potential role of EDD in regulating mitotic progression and the cellular response to perturbed mitosis.  相似文献   

15.
Chromosome segregation in mitosis is orchestrated by protein kinase signaling cascades. A biochemical cascade named spindle checkpoint ensures the spatial and temporal order of chromosome segregation during mitosis. Here we report that spindle checkpoint protein MAD1 interacts with NEK2A, a human orthologue of the Aspergillus nidulans NIMA kinase. MAD1 interacts with NEK2A in vitro and in vivo via a leucine zipper-containing domain located at the C terminus of MAD1. Like MAD1, NEK2A is localized to HeLa cell kinetochore of mitotic cells. Elimination of NEK2A by small interfering RNA does not arrest cells in mitosis but causes aberrant premature chromosome segregation. NEK2A is required for MAD2 but not MAD1, BUB1, and HEC1 to associate with kinetochores. These NEK2A-eliminated or -suppressed cells display a chromosome bridge phenotype with sister chromatid inter-connected. Moreover, loss of NEK2A impairs mitotic checkpoint signaling in response to spindle damage by nocodazole, which affected mitotic escape and led to generation of cells with multiple nuclei. Our data demonstrate that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. We hypothesize that NEK2A links MAD2 molecular dynamics to spindle checkpoint signaling.  相似文献   

16.
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1-3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.  相似文献   

17.
Bub1 maintains centromeric cohesion by activation of the spindle checkpoint   总被引:1,自引:0,他引:1  
Bub1 is a component of the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures genome stability by delaying anaphase until all the chromosomes are stably attached to spindle microtubules via their kinetochores. To define Bub1's role in chromosome segregation, embryogenesis, and tissue homeostasis, we generated a mouse strain in which BUB1 can be inactivated by administration of tamoxifen, thereby bypassing the preimplantation lethality associated with the Bub1 null phenotype. We show that Bub1 is essential for postimplantation embryogenesis and proliferation of primary embryonic fibroblasts. Bub1 inactivation in adult males inhibits proliferation in seminiferous tubules, reducing sperm production and causing infertility. In culture, Bub1-deficient fibroblasts fail to align their chromosomes or sustain SAC function, yielding a highly aberrant mitosis that prevents further cell divisions. Centromeres in Bub1-deficient cells also separate prematurely; however, we show that this is a consequence of SAC dysfunction rather than a direct role for Bub1 in protecting centromeric cohesion.  相似文献   

18.
The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.  相似文献   

19.
The mitotic checkpoint is a specialized signal transduction pathway that monitors kinetochore-microtubule attachment to achieve faithful chromosome segregation. MAD2 is an evolutionarily conserved mitotic checkpoint protein that exists in open (O) and closed (C) conformations. The increase of intracellular C-MAD2 level during mitosis, through O?C-MAD2 conversion as catalyzed by unattached kinetochores, is a critical signaling event for the mitotic checkpoint. However, it remains controversial whether MAD2 is an integral component of the effector of the mitotic checkpoint---the Mitotic Checkpoint Complex (MCC). We show here that endogenous human MCC is assembled by first forming a BUBR1:BUB3:CDC20 complex in G2 and then selectively incorporating C-MAD2 during mitosis. Nevertheless, MCC can be induced to form in G1/S cells by expressing a C-conformation locked MAD2 mutant, indicating intracellular level of C-MAD2 as a major limiting factor for MCC assembly. In addition, a recombinant MCC containing C-MAD2 exhibits effective inhibitory activity towards APC/C isolated from mitotic HeLa cells, while a recombinant BUBR1:BUB3:CDC20 ternary complex is ineffective at comparable concentrations despite association with APC/C. These results help establish a direct connection between a major signal transducer (C-MAD2) and the potent effector (MCC) of the mitotic checkpoint, and provide novel insights into protein-protein interactions during assembly of a functional MCC.  相似文献   

20.
Cell cycle checkpoint signaling stringently regulates chromosome segregation during cell division. MAD2 is one of the key components of the spindle and mitotic checkpoint complex that regulates the fidelity of cell division along with MAD1, CDC20, BUBR1, BUB3 and MAD3. MAD2 ablation leads to erroneous attachment of kinetochore-spindle fibers and defective chromosome separation. A potential role for MAD2 in the regulation of events beyond the spindle and mitotic checkpoints is not clear. Together with active spindle assembly checkpoint signaling, AURORA B kinase activity is essential for chromosome condensation as cells enter mitosis. AURORA B phosphorylates histone H3 at serine 10 and serine 28 to facilitate the formation of condensed metaphase chromosomes. In the absence of functional AURORA B cells escape mitosis despite the presence of misaligned chromosomes. In this study we report that silencing of MAD2 results in a drastic reduction of metaphase-specific histone H3 phosphorylation at serine 10 and serine 28. We demonstrate that this is due to mislocalization of AURORA B in the absence of MAD2. Conversely, overexpression of MAD2 concentrated the localization of AURORA B at the metaphase plate and caused hyper-phosphorylation of histone H3. We find that MAD1 plays a minor role in influencing the MAD2-dependent regulation of AURORA B suggesting that the effects of MAD2 on AURORA B are independent of the spindle checkpoint complex. Our findings reveal that, in addition to its role in checkpoint signaling, MAD2 ensures chromosome stability through the regulation of AURORA B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号