首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The rate at which parents deliver energy to their brood is an important factor in avian reproduction because poor condition caused by malnutrition may reduce the offspring's survival to breeding. Models of central place foraging predict that nesting parents should optimize their prey delivery rate by minimizing travelling distances and by selecting patches where the gain per unit cost is high. I investigated the allocation of searching time amongst food patches in the home ranges of breeding great tits, Parus major, and blue tits P. caeruleus, by radiotracking. The density of locations in individual trees was positively correlated with prey biomass within trees and negatively with the distance of the trees from the nest. These two factors explained 52% of the variance in the allocation of the birds' search time. In rich patches, food was reduced considerably within 20 m of the nests, and the birds' travelling distances increased significantly during the nestling period. In parallel to foraging selectively in rich resources near the nest, the birds continually sampled the trees in their territory. The average surplus search time due to resource exploration was 1.52 times (range 1.25-1.99) the expected search time if the birds had exclusively used the most profitable patch. Despite considerable effort in patch sampling, the overall search time per unit prey was 30% better than expected by an equal use of trees. The results suggest that foraging tit parents come close to the maximum rate of prey delivery possible in a given patch distribution. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

2.
Summary A month-long study was conducted on the comparative foraging behavior of 20 colonies of the leafcutting ant, Atta cephalotes L. in Santa Rosa National Park, Guanacaste Province, Costa Rica. The study was conducted during the middle of the wet season, when trees had mature foliage and the ants were maximally selective among species of potential host plants. The colonies always gathered leaves from more than a single tree species but on average one species constituted almost half the diet with the remaining species being of geometrically decreasing importance. Colonies exhibited greater diversity in their choice of leaves and lower constancy of foraging when the average quality of resource trees was lower, as predicted by elementary optimal foraging theory. Furthermore, the ants were more selective of the species they attacked at greater distances from the nest. However, the ants sometimes did not attack apparently palatable species, and often did not attack nearby individuals of species they were exploiting at greater distances.A classical explanation for why leafcutting ants exploit distant host trees when apparently equally good trees are nearer, is that the ants are pursuing a strategy of conserving resources to avoid long-term overgrazing pressure on nearby trees. We prefer a simpler hypothesis: (1) Trees of exploited species exhibit individual variation in the acceptability of their leaves to the ants. (2) The abundance of a species will generally increase with area and radial distance from the nest, so the probability that at least one tree of the species will be acceptable to the ants also increases with distance. (3) The ants forage using a system of trunk-trails cleared of leaf litter, which significantly reduces their travel time to previously discovered, high-quality resource trees (by a factor of 4- to 10-fold). (4) Foragers are unware of the total pool of resources available to the colony. Therefore once scouts have chanced upon a tree which is acceptable, the colony will concentrate on harvesting from that tree rather than searching for additional sources of leaves distant from the established trail.  相似文献   

3.
Populations of many species are spatially structured in matrilines, and their dynamics may be determined by matriline specific demographic processes. We examined whether the isolation of habitat patches (i.e. interpatch distance) affected the demography of matrilines in 14 experimentally fragmented populations of the root vole. Matrilines inhabiting the most isolated patches decreased in size over the breeding season, while matrilines in less isolated patches increased. The survival rate of adult females was the main factor underlying the variation in growth rates among matrilines. Low survival when patches were isolated seemed to be due to long-distance interpatch movements exposing females to increased predation rate.
The differential success of matrilines in patchy populations with variable interpatch distances acted to decrease the matrilineal diversity at the population level. Furthermore, isolated patches may function as sinks. Thus spatially explicit landscape features may affect both population demography and genetics.  相似文献   

4.
The benefit of producer (searches for own food) or scrounger (exploits the others’ food discoveries) foraging tactic in a group of socially feeding animals may depend on where the individual searches for food within the group. Scrounging may be more advantageous in the centre of the group, having more individuals around to join, while producing may be more beneficial at the edges, where more unexplored food patches may be found. This study shows within‐flock position correlates with foraging tactic use of feeding birds in socially foraging tree sparrows, Passer montanus. Sparrows staying closer to the centre of the flock found their food patches more frequently by joining (i.e. use more frequently the scrounging tactic) than those staying toward the edges. To our knowledge this is the first field study demonstrating the relationship between spatial position and foraging tactic use. We investigated this relationship under different perceived predation hazard, and found that under elevated risk of predation, central individuals may increase their use of joining more than individuals on the periphery of the flock. Moreover, we show that extremely specialized use of searching tactics may be very infrequent in tree sparrows. As both within‐flock position and search tactic use can be altered very quickly and without leaving the flock, individuals may easily alter them in order to adjust their behaviour.  相似文献   

5.
1. Olfactory predator search processes differ fundamentally to those based on vision, particularly when odour cues are deposited rather than airborne or emanating from a point source. When searching for visually cryptic prey that may have moved some distance from a deposited odour cue, cue context and spatial variability are the most likely sources of information about prey location available to an olfactory predator. 2. We tested whether the house mouse (Mus domesticus), a model olfactory predator, would use cue context and spatial variability when searching for buried food items; specifically, we tested the effect of varying cue patchiness, odour strength, and cue-prey association on mouse foraging success. 3. Within mouse- and predator-proof enclosures, we created grids of 100 sand-filled Petri dishes and buried peanut pieces in a set number of these patches to represent visually cryptic 'prey'. By adding peanut oil to selected dishes, we varied the spatial distribution of prey odour relative to the distribution of prey patches in each grid, to reflect different levels of cue patchiness (Experiment 1), odour strength (Experiment 2) and cue-prey association (Experiment 3). We measured the overnight foraging success of individual mice (percentage of searched patches containing prey), as well as their foraging activity (percentage of patches searched), and prey survival (percentage of unsearched prey patches). 4. Mouse foraging success was highest where odour cues were patchy rather than uniform (Experiment 1), and where cues were tightly associated with prey location, rather than randomly or uniformly distributed (Experiment 3). However, when cues at prey patches were ten times stronger than a uniformly distributed weak background odour, mice did not improve their foraging success over that experienced when cues were of uniform strength and distribution (Experiment 2). 5. These results suggest that spatial variability and cue context are important means by which olfactory predators can use deposited odour cues to locate visually cryptic prey. They also indicate that chemical crypsis can disrupt these search processes as effectively as background matching in visually based predator-prey systems.  相似文献   

6.
Understanding factors that ameliorate the impact of habitat loss is a major focus of conservation research. One key factor influencing species persistence and evolution is the ability to disperse across increasingly patchy landscapes. Here we ask whether interpatch distance (a proxy for habitat loss) and dispersal strategy can interact to form thresholds where connectivity breaks down. We assayed dispersal across a range of interpatch distances in fruit flies carrying allelic variants of a gene known to underlie differences in dispersal strategy. Dispersal‐limited flies experienced a distinct negative threshold in connectivity at greater interpatch distances, and this was not observed in more dispersive flies. Consequently, this differential response of dispersal‐limited and more dispersive flies to decreasing connectivity suggests that habitat loss could have important implications on the evolution and maintenance of genetic variation underlying dispersal strategy.  相似文献   

7.
Abstract: Temperate pond-breeding amphibians are vulnerable to forest fragmentation because they must access upland terrestrial sites during the nonbreeding season but are prone to desiccation in hot, dry environments without canopy cover. Harvesting techniques that retain live trees in the cut block are advocated for sustaining forest biodiversity, but the effects of these practices on amphibians are unknown. We studied red-legged frogs (Rana aurora) in movement trials to assess: 1) how short-term use of residual trees was affected by tree patch size, streams, and neighborhood features; 2) whether residual tree patches were used as stepping stones in negotiating cut blocks; 3) the effects of patch size and patch proximity in altering movement paths; and 4) the effects of retention level and patch size on interpatch distance. Residual tree patches were potentially valuable short-term refugia but their value was size dependent. Virtually all frogs released at the base of single trees or inside small tree clusters left within 72 hours, but the proportion leaving decreased curvilinearly with increasing patch size. Frogs were less likely to leave tree patches with a running stream or where neighborhood stream density was high. Residual tree patches did not systematically alter movement paths. Frogs intercepted residual tree patches mostly at random and had to be within 5-20 m of a tree patch before moving to it in greater proportions than expected by chance. However, amphibian movements were biased toward large (0.8 ha) patches and away from small (0.3 ha) patches 50 m away. Our results indicated that residual trees should not be retained singly but should be aggregated in groups between 0.8 ha and 1.5 ha, preferably in stream locations.  相似文献   

8.
We observed the foraging behavior of Diadegma semiclausum (Hymenoptera:Ichneumonidae), a larval parasitoid of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in a wind tunnel to determine how interpatch distance affects patch time allocation. Individual female wasps were released onto an experimental patch infested with host larvae and were allowed freely to leave for an identically extrapatch placed upwind of the experimental patch with varying interpatch distances. The effects of interpatch distance and within-patch foraging experience on the patch-leaving tendency of the parasitoid were analyzed bymeans of the proportional hazards model. Increasing interpatch distance andunsuccessful host encounter as a result of host defense decreased the patch-leaving tendency, while successful oviposition and unsuccessful search time since last oviposition increased the patch-leaving tendency. Asa result, both patch residence time and number of ovipositions by D. semiclausum increased with increasing interpatch distance, which appears to agree with the general predictions of the marginal value theorem that a parasitoid should stay longer and parasitize more hosts with increasing interpatch distance.  相似文献   

9.
We analysed the foraging behaviour of free-ranging Blue Tits Parus caeruleus in open holm oak Quercus ilex woodlands of western Spain during winter. Such woodlands are patchy for foraging tits because of the scattered distribution of trees and the patterns of abundance of canopy arthropods within and among trees. Results were compared with those obtained in spring of the same year, when we found that the foraging behaviour and spatial distribution of Blue Tits were largely unaffected by food availability (Pulido and Díaz 1997). Patch (tree) residence time was highly variable both within and among individual birds, and it was uncorrelated with either previous travel time or patch quality. Contrary to a priori expectations, the behaviour of tits did not conform to short-term energy maximizing rules in winter, in spite of a 2.5-fold decrease in food supply from spring to winter and a likely 2-fold increase in bird requirements. Instead, birds tended to fly towards patches that were further away than locally available. Overall, we conclude that energy intake rate was not the fitness-related currency that birds were trying to maximize while foraging.  相似文献   

10.
Omnivores feed on animals with dynamic distributions and on plants with static distributions. The search tactics they adopt will not only define the risk for the targeted prey, but also for other prey that may be consumed when encountered. The potential impact of omnivores on the dynamics of multi‐prey systems thus depends on resource selection and on the tactics used to find their prey. We present an approach that can clarify the foraging decisions of omnivores by combining analyses of habitat selection, local residency time, and interpatch movements. We use this framework to evaluate whether predation by omnivorous black bears on ungulate neonates resulted from an active search or from incidental encounters. We monitored 12 bears, 22 forest‐dwelling caribou, and 36 moose during calving seasons. We estimated the spatial patterns in relative occurrence probability of ungulate neonates using Resource Selection Functions (RSFs). We also mapped plant abundance from vegetation surveys. RSF were then built to assess the link between bear distribution and the distribution of these three food types (vegetation, moose calves, caribou fawns). We further evaluated the search tactic used by bears that led to this spatial dependency by exploring patterns of residency times and interpatch movements. Bears did not select areas with a high probability of encounter with neonates, but selected areas with abundant vegetation. Surprisingly, bears displayed shorter residency times in vegetation‐rich areas. The selection for vegetation‐rich areas was therefore achieved by moving preferentially, but frequently, between areas offering abundant vegetation. Such frequent interpatch movements could result in high rates of fortuitous encounters with neonates, even if bears are not actively searching for them. To mitigate the impacts of forest harvesting on threatened caribou populations, vegetation‐rich areas selected by bears (e.g. roadsides) should be segregated from large patches of mature conifer forest suitable for caribou.  相似文献   

11.
Background and AimsMammals and molluscs (MaM) are abundant herbivores of tree seeds and seedlings, but how the trees and their environment affect MaM herbivory has been little studied. MaM tend to move much larger distances during the feeding stage than the more frequently studied insect herbivores. We hypothesize that MaM (1) select and stay within the patches that promise to be relatively the richest in seeds and seedlings, i.e. patches around adult trees that are old and within a distantly related, less productive neighborhood; and (2) try to remain sheltered from predators while foraging, i.e. mammals remain close to adult trees or to cover by herbs while foraging, and might force their mollusc prey to show the opposite distribution.MethodsWe exposed oak acorns and seedlings in a temperate forest along transects from adult conspecifics in different neighbourhoods. We followed acorn removal and leaf herbivory. We used exclusion experiments to separate acorn removal by ungulates vs. rodents and leaf herbivory by insects vs. molluscs. We measured the size of the closest conspecific adult tree, its phylogenetic isolation from the neighbourhood and the herbaceous ground cover.Key ResultsConsistent with our hypothesis, rodents removed seeds around adult trees surrounded by phylogenetically distant trees and by a dense herb cover. Molluscs grazed seedlings surrounding large conspecific adults and where herb cover is scarce. Contrary to our hypothesis, the impact of MaM did not change from 1 to 5 m distance from adult trees.ConclusionsWe suggest that foraging decisions of MaM repulse seedlings from old adults, and mediate the negative effects of herbaceous vegetation on tree recruitment. Also, an increase in mammalian seed predation might prevent trees from establishing in the niches of phylogenetically distantly related species, contrary to what is known from insect enemies.  相似文献   

12.
Pauesia unilachni is a parasitoid of the grey pine aphid, Schizolachnus pineti which feeds on needles of Scots pine. P. unilachni females displayed a dual movement system when foraging within a pine. They left a colony usually by foot and searched nearby needles intensively, thereby ensuring a maximum probability to encounter neighbouring S. pineti colonies. If search by foot was not successful, parasitoids changed their behaviour and searched needles by flight to cover larger distances. This behaviour was consistent both on uninfested and S. pineti-infested trees in the laboratory and in the field. In total, females allocated a 15-fold amount of time into search by foot compared to search by flight, although the overall foraging success, i.e. the number of discovered host colonies, did not differ significantly between the two movement types. However, the reduction of searching time by flight involved also higher travel mortality risks. In the field, P. unilachni got frequently entangled in spider nets when searching by flight and were killed.  相似文献   

13.
Animals foraging in heterogeneous environments benefit from information on local resource density because it allows allocation of foraging effort to rich patches. In foraging groups, this information may be obtained by individuals through sampling or by observing the foraging behaviour of group members. We studied the foraging behaviour of goldfish (Carassius auratus) groups feeding in pools on resources distributed in patches. First, we determined if goldfish use sampling information to distinguish between patches of different qualities, and if this allowed goldfish to benefit from a heterogeneous resource distribution. Then, we tested if group size affected the time dedicated to food searching and ultimately foraging success. The decision of goldfish to leave a patch was affected by whether or not they found food, indicating that goldfish use an assessment rule. Giving-up density was higher when resources were highly heterogeneous, but overall gain was not affected by resource distribution. We did not observe any foraging benefits of larger groups, which indicate that grouping behaviour was driven by risk dilution. In larger groups the proportion searching for food was lower, which suggests interactions among group members. We conclude that competition between group members affects individual investments in food searching by introducing the possibility for alternative strategies, such as scrounging or resource monopolisation.  相似文献   

14.
Optimal foraging theory has dealt with the following questions independently: (1) On what prey types should an individual predator feed (optimal diet)? (2) How long should a predator stay in each patch if prey is patchily distributed (optimal allocation of time to patches) ? This paper explores optimal foraging in patches containing several different kinds of prey. Results obtained by simulation show that deviations from recent predictions are to be expected, particularly for long interpatch travel times and rapid depletion of profitable prey types. In these situations the tactics of feeding as either specialist or as a generalist can be inferior to a tactic which starts as a specialist and then expands the diet after some time in the patch. Furthermore, predators should not necessarily stay longer in a patch if interpatch travel time increases. Some experimental tests of these new predictions are proposed.  相似文献   

15.
Colonization Patterns of Insects Breeding in Wood-Decaying Fungi   总被引:1,自引:0,他引:1  
Many insects dependent on dead wood are considered threatened by modern forestry. This may partly be due to substrate patches being too widely scattered to be effectively colonized. We studied how rates of colonization by insect species breeding in polypore fruiting bodies are affected by interpatch distance and habitat matrix characteristics. In field experiments, fruiting bodies of Fomitopsis pinicola and Fomes fomentarius were put out at different distances from natural sources of insects. The anobiid beetles Dorcatoma spp. were the most successful colonizers of distant patches, and they readily flew over open fields. Cis beetles were less successful colonizers, despite their generally higher abundance. We hypothesize that the Dorcatoma spp. are inferior competitors, but superior colonizers of distant resources compared with Cis spp. The flies Leucophenga quinquemaculata (Drosophilidae) and Medetera impigra (Dolichopodidae) appeared to be more affected by distance than the beetles studied in their colonization of fungal fruiting bodies. Lower rates of parasitism were recorded on distant patches, and parasitoids appeared more affected by distance than their hosts. Most of the insect species studied can probably persist in the managed forest landscape if suitable breeding substrate is created continuously on a 1 km2 scale.  相似文献   

16.
F. J. Pulido  M. Díaz 《Oecologia》1997,111(3):434-442
 In spite of recent theoretical interest, few field studies have addressed the links between individual behavioral decisions and population distribution. This work analyzes the foraging behavior of individuals and the spatial distribution of a population of blue tits (Parus caeruleus) just before the main breeding season, when blue tit foraging was not affected by central-place or flocking behaviors. The study was carried out in open holm oak Quercus ilex woodlands (dehesas) that are patchy for canopy-foraging birds because of the scattered arrangement of trees. Residence time on each tree was not correlated either with previous flight time or with prey abundance in trees. Flight distances between trees were larger than average distances estimated in random samples of holm oaks taken close to foraging birds. Trees were not selected by birds on the basis of their expected energy costs and rewards. Bird abundance was not related to food availability in trees or to tree size across dehesas. However, bird abundance was strongly correlated with tree density and with the availability of tree holes for nesting, to the extent that the proportion of tits matched the proportions of both tree abundance and hole abundance across study plots. Overall, neither the behavior of individuals nor the distribution of the population of blue tits corresponded with food resources, which appeared superabundant; instead, tits appeared to behave and be distributed according to the distribution of structural resources such as trees and tree holes for nesting. Received: 18 August 1996 / Accepted: 14 March 1997  相似文献   

17.
18.
Abstract.  1. Resource characteristics and competitive pressure can affect an ant colony's foraging strategy. This study examined the ability of the wood ant Formica integroides to respond, at both the colony and individual levels, to changes in competitive pressure for access to terrestrial and arboreal resources.
2. Because foraging behaviours depend on resource characteristics, foraging for different resource types (e.g. terrestrial and arboreal habitats) produces different spatial or territorial arrangements. In this study, terrestrial contests for resources followed an interference-exploitation tradeoff, while arboreal foragers defended entire trees as absolute territories.
3. Competitive pressure for access to arboreal resources was shown to increase with distance from F. integroides nests.
4. In this study, the ability of F. integroides to defend a resource varied with body size. Large foragers were better defenders than small foragers. For groups of foragers, the ability to defend a resource increased with the ratio of large to small foragers.
5. In response to competitive pressure, F. integroides colonies altered the size distribution of arboreal, but not terrestrial, foragers. An increase in competitive pressure was matched by an increase in the number of large foragers allocated to trees. This response to competition affected the relationship between body size and distance from the nest for arboreal foragers.
6. Foraging behaviours for individual arboreal foragers also varied with competitive pressure. As competition increased, large arboreal foragers spent more time in direct contact with the resource rather than standing between resource patches.  相似文献   

19.
Mounting theoretical and empirical evidence shows that matrix heterogeneity may have contrasting effects on metapopulation dynamics by contributing to patch isolation in nontrivial ways. We analyze the movement properties during interpatch dispersal in a metapopulation of Iberian lynx (Lynx pardinus). On a daily temporal scale, lynx habitat selection defines two types of matrix habitats where individuals may move: open and dispersal habitats (avoided and used as available, respectively). There was a strong and complex impact of matrix heterogeneity on movement properties at several temporal scales (hourly and daily radiolocations and the entire dispersal event). We use the movement properties on the hourly temporal scale to build a simulation model to reconstruct individual dispersal events. The two most important parameters affecting model predictions at both the individual (daily) and metapopulation scales were related to the movement capacity (number of movement steps per day and autocorrelation in dispersal habitat) followed by the parameters representing the habitat selection in the matrix. The model adequately reproduced field estimates of population-level parameters (e.g., interpatch connectivity, maximum and final dispersal distances), and its performance was clearly improved when including the effect of matrix heterogeneity on movement properties. To assume there is a homogeneous matrix results in large errors in the estimate of interpatch connectivity, especially for close patches separated by open habitat or corridors of dispersal habitat, showing how important it is to consider matrix heterogeneity when it is present. Movement properties affect the interaction of dispersing individuals with the landscape and can be used as a mechanistic representation of dispersal at the metapopulation level. This is so when the effect of matrix heterogeneity on movement properties is evaluated under biologically meaningful spatial and temporal scales.  相似文献   

20.
1. Heterogeneity in food abundance allows a forager to concentrate foraging effort in patches that are rich in food. This might be problematic when food is cryptic, as the content of patches is unknown prior to foraging. In such case knowledge about the spatial pattern in the distribution of food might be beneficial as this enables a forager to estimate the content of surrounding patches. A forager can benefit from this pre-harvest information about the food distribution by regulating time in patches and/or movement between patches. 2. We conducted an experiment with mallard Anas platyrhynchos foraging in environments with random, regular, and clumped spatial configurations of full and empty patches. An assessment model was used to predict the time in patches for different spatial distributions, in which a mallard is predicted to remain in a patch until its potential intake rate drops to the average intake rate that can be achieved in the environment. A movement model was used to predict lengths of interpatch movements for different spatial distributions, in which a mallard is predicted to travel to the patch where it expects the highest intake rate. 3. Consistent with predictions, in the clumped distribution mallard spent less time in an empty patch when the previously visited neighbouring patch had been empty than when it had been full. This effect was not observed for the random distribution. This shows that mallard use pre-harvest information on spatial pattern to improve patch assessment. Patch assessment could not be evaluated for the regular distribution. 4. Movements that started in an empty patch were longer than movements that started in a full patch. Contrary to model predictions this effect was observed for all spatial distributions, rather than for the clumped distribution only. In this experiment mallard did not regulate movement in relation to pattern. 5. An explanation for the result that pre-harvest information on spatial pattern affected patch assessment rather than movement is that mallard move to the nearest patch where the expected intake rate is higher than the critical value, rather than to the patch where the highest intake rate is expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号