首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The binding of horse heart cytochrome c to yeast cytochrome c peroxidase in which the heme group was replaced by protoporphyrin IX was determined by a fluorescence quenching technique. The association between ferricytochrome c and cytochrome c peroxidase was investigated at pH 6.0 in cacodylate/KNO3 buffers. Ionic strength was varied between 3.5 mM and 1.0 M. No binding occurs at 1.0 M ionic strength although there was a substantial decrease in fluorescence intensity due to the inner filter effect. After correcting for the inner filter effect, significant quenching of porphyrin cytochrome c peroxidase fluorescence by ferricytochrome c was observed at 0.1 M ionic strength and below. The quenching could be described by 1:1 complex formation between the two proteins. Values of the equilibrium dissociation constant determined from the fluorescence quenching data are in excellent agreement with those determined previously for the native enzyme-ferricytochrome c complex at pH 6.0 by difference spectrophotometry (J. E. Erman and L. B. Vitello (1980) J. Biol. Chem. 225, 6224-6227). The binding of both ferri- and ferrocytochrome c to cytochrome c peroxidase was investigated at pH 7.5 as functions of ionic strength in phosphate/KNO3 buffers using the fluorescence quenching technique. The binding in independent of the redox state of cytochrome c between 10 and 20 mM ionic strength, but ferricytochrome c binds with greater affinity at 30 mM ionic strength and above.  相似文献   

2.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

3.
K L Kim  D S Kang  L B Vitello  J E Erman 《Biochemistry》1990,29(39):9150-9159
The steady-state kinetics of the cytochrome c peroxidase catalyzed oxidation of horse heart ferrocytochrome c by hydrogen peroxide have been studied at both pH 7.0 and pH 7.5 as a function of ionic strength. Plots of the initial velocity versus hydrogen peroxide concentration at fixed cytochrome c are hyperbolic. The limiting slope at low hydrogen peroxide give apparent bimolecular rate constants for the cytochrome c peroxidase-hydrogen peroxide reaction identical with those determined directly by stopped-flow techniques. Plots of the initial velocity versus cytochrome c concentration at saturating hydrogen peroxide (200 microM) are nonhyperbolic. The rate expression requires squared terms in cytochrome c concentration. The maximum turnover rate of the enzyme is independent of ionic strength, with values of 470 +/- 50 s-1 and 290 +/- 30 s-1 at pH 7.0 and 7.5, respectively. The limiting slope of velocity versus cytochrome c concentration plots provides a lower limit for the association rate constant between cytochrome c and the oxidized intermediates of cytochrome c peroxidase. The limiting slope varies from 10(6) M-1 s-1 at 300 mM ionic strength to 10(8) M-1 s-1 at 20 mM ionic strength and extrapolates to 5 x 10(8) M-1 s-1 at zero ionic strength. The data are discussed in terms of both a two-binding-site mechanism and a single-binding-site, multiple-pathway mechanism.  相似文献   

4.
1. Hydrated electrons, produced by pulse radiolysis react with porphyrin cytochrome c with a bimolecular rate constant of 3-10(10) M-1 S-1 at 21 degrees C and pH 7.4. 2. After the reduction step an absorbance change with a half-life of 5 microns is observed with the spectral range of 430-470 nm. A relatively stable intermediate then decays with a half-life of 15 s. 3. The spectrum of the intermediate observed 50 microns after the generation of hydrated electrons shows a broad absorption band between 600 and 700 nm and a peak at 408 nm. The spectrum is attributed to the protonated form of an initially produced porphyrin anion radical. 4. Reduced porphyrin cytochrome c reacts with ferricytochrome c with a bimolecular constant of 2-10(5) M-1- S-1 in 2 mM phosphate pH 7.4, at 21 degrees C and of 2 - 10(6) M-1-S-1 under the same conditions but at 1 M ionic strength. It is proposed that electron transfer in an analogous exchange reaction between ferrocytochrome c and ferricytochrome c occurs via the exposed part of the haem.  相似文献   

5.
The interaction between cytochrome c and cytochrome c peroxidase was investigated using sedimentation equilibrium at pH 6,20 degrees C, in a number of buffer systems varying in ionic strength between 1 and 100 mM. Between 10 and 100 mM ionic strengths, the sedimentation of the individual proteins was essentially ideal, and sedimentation equilibrium experiments on mixtures of the two proteins were analyzed assuming ideal solution behavior. Analysis of the distribution of mixtures of cytochrome c and cytochrome c peroxidase in the ultracentrifuge cell based on a model involving the formation of a 1:1 cytochrome c-cytochrome c peroxidase complex gave values of the equilibrium dissociation constant ranging from 2.3 +/- 2.7 microM at 10 mM ionic strength to infinity (no detectable interaction) at 100 mM ionic strength. Attempts to determine the presence of complexes involving two cytochrome c molecules bound to cytochrome c peroxidase were inconclusive.  相似文献   

6.
The bis(terpyridine)cobalt(II), Co(terpy)2(2+), reduction of cytochrome c peroxidase compound I, CcP-I, has been investigated using stopped-flow techniques as a function of ionic strength in pH 7.5 buffers at 25 degrees C. Co(terpy)2(2+) initially reduces the Trp191 radical site in CcP-I with an apparent second-order rate constant, k2, equal to 6.0+/-0.4x10(6) M(-1)s(-1) at 0.01 M ionic strength. A pseudo-first-order rate constant of 480 s(-1) was observed for the reduction of CcP-I by 79 microM Co(terpy)2(2+) at 0.01 M ionic strength. The one-electron reduction of CcP-I produces a second enzyme intermediate, CcP compound II (CcP-II), which contains an oxyferryl, Fe(IV), heme. Reduction of the Fe(IV) heme in CcP-II by Co(terpy)2(2+) shows saturation kinetics with a maximum observed rate constant, k3max, of 24+/-2 s(-1) at 0.01 M ionic strength. At low reductant concentrations, the apparent second-order rate constant for Co(terpy)2(2+) reduction of CcP-II, k3, is 1.2+/-0.5x10(6) M(-1) s-1. All three rate constants decrease with increasing ionic strength. At 0.10 M ionic strength, values of k2, k3, and k3max decrease to 6.0+/-0.8x10(5) M(-1) s(-1), 1.2+/-0.5x10(5) M(-1) s(-1), and 11+/-3 s(-1), respectively. Both the product, Co(terpy)2(3+), and ferricytochrome c inhibit the rate of Co(terpy)2(2+) reduction of CcP-I and CcP-II. Gel-filtration studies show that a minimum of two Co(terpy)2(3+) molecules bind to the native enzyme in low ionic strength buffers.  相似文献   

7.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

8.
Y Wu  Y Wang  C Qian  J Lu  E Li  W Wang  J Lu  Y Xie  J Wang  D Zhu  Z Huang  W Tang 《European journal of biochemistry》2001,268(6):1620-1630
Using 1617 meaningful NOEs with 188 pseudocontact shifts, a family of 35 conformers of oxidized bovine microsomal cytochrome b5 mutant (E44/48/56A/D60A) has been obtained and is characterized by good resolution (rmsd to the mean structure are 0.047 +/- 0.007 nm and 0.095 +/- 0.008 nm for backbone and heavy atoms, respectively). The solution structure of the mutant, when compared with the X-ray structure of wild-type cytochrome b(5), has no significant changes in the whole folding and secondary structure. The binding between cytochrome b(5) and cytochrome c shows that the association constant of the mutant-cytochrome c complex is much lower than the one for wild-type complex (2.2 x 10(4) M(-1) vs. 5.1 x 10(3) M(-1)). The result suggests the four acidic residues have substantial effects on the formation of the complex between cytochrome b(5) and cytochrome c, and therefore it is concluded reasonably that the electrostatic interaction plays an important role in maintaining the stability and specificity of the complex formed. The competition between the ferricytochrome b(5) mutant and [Cr(oxalate)(3)](3-) for ferricytochrome c shows that site III of cytochrome c, which is a strong binding site to wild-type cytochrome b(5), still binds to the mutant with relatively weaker strength. Our results indicate that certain bonding geometries do occur in the interaction between the present mutant and cytochrome c and these geometries, which should be quite different from the ones of the Salemme and Northrup models.  相似文献   

9.
The reduction of horse heart ferricytochrome c by the tryptic fragment of bovine liver cytochrome b5 and its dimethyl ester heme (DME)-substituted derivative has been studied as a function of ionic strength, pH, and temperature under solution conditions where the reaction is bimolecular. The rate constant for ferricytochrome c reduction by native ferrocytochrome b5 is 1.8 (+/- 0.2) x 10(7) M-1 s-1 (25 degrees C) with delta H++ = 7.5 (+/- 0.2) kcal/mol and delta S++ = -0.3 (+/- 0.6) eu (pH 7.0, I = 0.348 M). Under the same solution conditions, the reduction of ferricytochrome c by DME-ferrocytochrome b5 proceeds with a rate constant of 1.7 (+/- 0.1) x 10(7) M-1 s-1 with delta H++ = 7.9 (+/- 0.4) kcal/mol and delta S++ = 1 (+/- 1) eu. The rate constants for both reactions are strongly dependent on ionic strength. A detailed electrostatic analysis of the proteins has been performed. Two relatively simple Brownian dynamics simulation models predict rate constants for the reaction between the two native proteins that demonstrate a dependence on ionic strength similar to that observed experimentally. In one of these models, the proteins are treated as spheres with reactive surface patches that are defined by a 5 degrees cone generated about the dipole vector calculated for each protein and aligned with the presumed electron-transfer site near the partially exposed heme edge. The second model replaces the reactive patch assumption with an exponential distance dependence for the probability of reaction that permits estimation of a value for the distance-dependence factor alpha. Calculations with this latter model in combination with the aligned dipole assumption provide a reasonable approximation to the observed ionic strength dependence for the reaction and are consistent with a value of alpha = 1.2 A-1.  相似文献   

10.
Cysteine alone reduces horse heart cytochrome c very slowly (k approximately or equal too 1.0 M-1s-1) with a rate constant virtually identical in high and low ionic strength buffers. Copper catalyzes this reaction increasing the rate by a factor of 10(5) in 50 mM phosphate and by a factor of 10(6) in 10mM Tris buffers. When ferricytochrome c and cysteine are mixed in an oxygen electrode a "burst" of oxygen uptake is seen, the decline in which parallels the reduction of cytochrome c. When cytochrome oxidase is added to such a mixture two routes of electron transfer to oxygen exist: enzymatic and ferricytochrome c dependent nonenzymatic. Both processes are sensitive to cyanide, but azide inhibits only the authentic cytochrome c oxidase catalyzed process and BCS the ferricytochrome c stimulated reaction.  相似文献   

11.
F Guerlesquin  J C Sari  M Bruschi 《Biochemistry》1987,26(23):7438-7443
The complex formation between cytochrome c3 and ferredoxin I from Desulfovibrio desulfuricans Norway was studied by microcalorimetric and pH-stat titration measurements. The stoichiometry of the complex was found to be one molecule of cytochrome c3 per monomer of ferredoxin I. The association constant determined at T = 283 K in tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffer, 10(-2) M and pH 7.7, was KA = 1.3 X 10(6) M-1. Though the enthalpy (delta H = 19 +/- 1 kJ.mol-1) and the entropy (delta S = 183 J.K-1.mol-1) were positive and consistent with a hydrophobic process involved in the interaction, the analysis of ionic strength dependence exhibited an important electrostatic effect on the association. The use of both Tris-HCl and phosphate buffers during microcalorimetric experiments showed proton release at pH 6.6. The pH-stat study of proton release indicated that one of the charged groups involved in the interacting site underwent a pK shift from 7.35 to 6.05.  相似文献   

12.
M R Mauk  L S Reid  A G Mauk 《Biochemistry》1982,21(8):1843-1846
The interaction between cytochrome c and the tryptic fragment of cytochrome b5 has been found to produce a difference spectrum in the Soret region with a maximum absorbance at 416 nm. The intensity of this difference has been used to determine the stoichiometry of complex formation and the stability of the complex formed. At pH 7.0 [25 degrees C (phosphate), mu = 0.01 M], the two proteins were found to form a 1:1 complex with an association constant, KA, of 8(3) x 10(4) M-1. The stability of the complex was found to be strongly dependent on ionic strength with KA increasing to 4(3) x 10(6) M-1 at mu = 0.001 M [25 degrees C, pH 7.0 (phosphate)]. Analysis of the dependence of KA on pH from pH 6.5 to 8 demonstrated that this complex is maximally stable between pH 7 and 8 or about midway between the isoelectric points of the two proteins. Analysis of the temperature dependence of KA revealed that formation of the complex between the two proteins is largely entropic in origin with delta Ho = 1 +/- 3 kcal/mol and delta So = 33 +/- 11 eu [pH 7.0 (phosphate), mu = 0.001 M]. This result may be explained either by the model of Clothia and Janin [Clothia, C., & Janin, J. (1975) Nature (London) 256, 705] in terms of extensive solvent reorganization upon complexation or by the model of Ross and Subramanian [Ross, P. D., & Subramanian, S. (1981) Biochemistry 20, 3096] in which the negative enthalpic and entropic contributions of short-range protein-protein interactions are offset by proton release.  相似文献   

13.
The effect of varying polyglutamate chain length on local and global stability of horse heart ferricytochrome c was studied using scanning calorimetry and spectroscopy methods. Spectral data indicate that polyglutamate chain lengths equal or greater than eight monomer units significantly change the apparent pK(a) for the alkaline transition of cytochrome c. The change in pK(a) is comparable to the value when cytochrome c is complexed with cytochrome bc(1). Glutamate and diglutamate do not significantly alter the temperature transition for cleavage of the Met(80)-heme iron bond of cytochrome c. At low ionic strength, polyglutamates consisting of eight or more glutamate monomers increase midpoint of the temperature transition from 57.3+/-0.2 to 66.9+/-0.2 degrees C. On the other hand, the denaturation temperature of cytochrome c decreases from 85.2+/-0.2 to 68.8+/-0.2 degrees C in the presence of polyglutamates with number of glutamate monomers n >or approximately equal 8. The rate constant for cyanide binding to the heme iron of cytochrome c of cytochrome c-polyglutamate complex also decreases by approximately 42.5% with n>or approximately equal 8. The binding constant for the binding of octaglutamate (m.w. approximately 1000) to cyt c was found to be 1.15 x 10(5) M(-1) at pH 8.0 and low ionic strength. The results indicate that the polyglutamate (n>or approximately equal 8) is able to increase the stability of the methionine sulfur-heme iron bond of cytochrome c in spite of structural differences that weaken the overall stability of the cyt c at neutral and slightly alkaline pH.  相似文献   

14.
S Loo  J E Erman 《Biochemistry》1975,14(15):3467-3470
The rate of the reaction between cytochrome c peroxidase and hydrogen peroxide was investigated using the stopped-flow technique. The apparent bimolecular rate constant was determined between pH 3.3 and pH 11 as a function of ionic strength. The pH dependence of the apparent bimolecular rate constant can be explained by assuming that two ionizable groups on the enzyme strongly influence the rate of the reaction. At 0.1 M ionic strength, a group with a pKa of 5.5 must be unprotonated and a group with a pKa of 9.8 must be protonated for the enzyme to react rapidly with hydrogen peroxide. The apparent acid dissociation constants depend upon the ionic strength. The true bimolecular rate constant has a value of (4.5 +/- 0.3) X 10(7) M-1 sec-1 and is independent of ionic strength.  相似文献   

15.
The apparent equilibrium constant and rate of oxidation was investigated for the reaction of cytochrome c with iron hexacyanide. It was found that if horse heart ferricytochrome c was exposed to ferricyanide (to oxidize traces of reduced protein) the cytochrome subsequently, even after extensive dialysis, had an apparent equilibrium constant different from that of electrodialyzed protein. The effect of ferricyanide ion apparently cannot be removed by ordinary dialysis. The ionic strength dependence of the apparent equilibrium constant and bimolecular oxidation rate constant was measured in the range 1--200 mM using Tris--cacodylate or potassium phosphate buffers at pH 7.0, and electrodialyzed horse heart cytochrome c. The oxidation reaction proceeded very rapidly. Extrapolated to zero ionic strength, kox (approximately 9 X 10(9) M-1 S-1) was about 7% of that calculated for a diffusion-limited reaction. Since the exposed heme edge occupies only the order of 3% of the surface area, electron transfer apparently results at nearly every collision with the active-site region. An effective charge of + 7.8 units was estimated for the oxidation reaction. The rate of oxidation of Pseudomonas aeruginosa c551 was much slower (kox at mu = 0 was the order of 6 X 10(3)), and was not consistent with diffusion-limited kinetics.  相似文献   

16.
L Qin  N M Kosti? 《Biochemistry》1992,31(22):5145-5150
Reduction of turnip ferricytochrome f by flavin semiquinones and oxidation of this ferrocytochrome f by French bean cupriplastocyanin are studied by laser flash photolysis over a wide range of ionic strengths. Second-order rate constants (+/- 15%) at extreme values of ionic strength, all at pH 7.0 and 22 degrees C, are as follows: with FMN semiquinone at 1.00 and 0.0040 M, 5.0 x 10(7) and 3.9 x 10(8) M-1 s-1; with riboflavin semiquinone at 1.00 and 0.0040 m, 1.7 x 10(8) and 1.9 x 10(8) M-1 s-1; with lumiflavin semiquinone at 1.00 and 0.0045 M, 1.8 x 10(8) and 4.5 x 10(8) M-1 s-1; with cupriplastocyanin at 1.00 and 0.100 M, 1.4 x 10(6) and 2.0 x 10(8) M-1 s-1. These reactions of cytochrome f are governed by the local positive charge of the interaction domain (the exposed heme edge), not by the overall negative charge of the protein. Lumiflavin semiquinone behaves as if it carried a small negative charge, probably because partial localization of the odd electron gives this electroneutral molecule some polarity; local charge seems to be more important than overall charge even for relatively small redox agents. The dependence of the rate constants on ionic strength was fitted to the equation of Watkins; this model recognizes the importance of local charges of the domains through which redox partners interact. There is kinetic evidence that a noncovalent complex between cytochrome f and plastocyanin exists at low ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
R Timkovich 《Biochemistry》1986,25(5):1089-1093
Mixtures of the dissimilatory nitrite reductase cytochrome cd1 from Pseudomonas aeruginosa and potential electron-donating proteins were prepared in both fully oxidized and fully reduced states and examined by 1H NMR spectroscopy. The relatively narrower lines of the donor proteins enabled them to be clearly observed in spectra in the presence of significant amounts of the high molecular weight cd1. Mixtures of the physiological donor (Pseudomonas ferrocytochrome c-551) and ferrocytochrome cd1 showed specific line-broadening effects on the resonances of c-551 that depended on the mole ratio of c-551 to cd1. The experimental broadening fit a model in which c-551 is in intermediate or fast exchange between free solution and a complex with cd1, with an association constant for the complex in excess of 10(4) M-1. The model yields a minimum estimate for the forward bimolecular rate constant of 5 X 10(7) M-1 s-1 and suggests that the actual value may be much larger. The complexation was independent of pH in the range of 6-8, was independent of ionic strength over a salt concentration range of 20-1000 mM, and possessed a low thermal activation barrier. Mixtures of ferricytochrome c-551 and ferricytochrome cd1 showed no observable NMR perturbations, indicating that any hypothetical complex involving the oxidized forms must follow different dynamical and/or equilibrium conditions. No observable NMR perturbations existed in spectra of mixtures of cd1 and mammalian cytochrome c or Pseudomonas azurin in either oxidation state.  相似文献   

18.
Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways.  相似文献   

19.
A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 microM was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.  相似文献   

20.
Electron transfer from cobaltocytochrome c to ferricytochrome c has been studied by stopped-flow kinetics. The second-order rate constant at pH 7.0, 0.1 ionic strenght, 0.2 M phosphate, and 25 degrees C is 8.3 x 103 M-1 s-1. The activation parameters obtained from measurements made between 20 and 50 degrees C are deltaHnot equal to = 2.3 kcal mol-1 and deltaSnot equal to = -33 eu. The rate constant is not significantly dependent on ionic strength; it is also relatively independent of pH between the pK values for conformation transitions. The rate diminishes at pH greater than 12. The self-exchange reaction of cobalt cytochrome c was investigated with pulsed Fourier transform 1H NMR. The rate is too slow on the 1H NMR scale; it is estimated to be less than 133 M-1 s-1. These results together with the self-exchange rates of iron cytochrome c [Gupta, R.K., Koenig, S. H., and Redfield, A. G. (1972), J. Magn. Reson. 7, 66] were analyzed by theories of Jortner and Hopfield. The theories predict the self-exchange of Cocyt c to be too slow for 1H NMR determination. The rate constant calculated by the nonadiabatic multiphonon electron-tunneling theory for the Fecyt c-Fecyt c+ and Cocyt c-Fecyt c+ electron transfers are in good agreement with experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号