首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antibodies against both the native and the deglycosylated cationic peanut peroxidase (C.PRX) were used to probe the structural relationship of this isozyme with its anionic counterpart. Not only the native but also the deglycosylated forms of the cationic and the anionic peroxidases reacted with both antibodies. The activity of the cationic isozymes was inhibited by anti-native C.PRX. Similar but nevertheless distinct immunodetection patterns resulted from reaction of the partially digested cationic and anionic peroxidase peptides with antibodies directed to the deglycosylated as well as to the native C.PRX, suggesting a similarity in their polypeptide structures.  相似文献   

2.
The activities of a cationic (C.PRX) and an anionic peroxidase isolated from peanut (Arachis hypogaea)-cell suspension culture were drastically reduced when they were deglycosylated with glycopeptidase F or oxidized by 10 mM-periodate. In contrast with the controls, the deglycosylated or the oxidized peroxidases were much more susceptible to proteolytic degradation. In radiolabelling experiments with [35S]methionine, the non-glycosylated C.PRX was synthesized in the tunicamycin-treated cultures and secreted into the medium. Examination of the C.PRX polypeptides by SDS/polyacrylamide-gel electrophoresis followed by fluorography showed that the non-glycosylated form had an Mr of approx. 31,000, which is about 78% of that of the glycosylated form. Our results suggest that carbohydrates may not be essential for peroxidase secretion, but that stabilization of the peroxidase molecules and acquisition by these isoenzymes of a catalytically active conformation is linked directly or indirectly to glycosylation.  相似文献   

3.
Ten monoclonal antibodies (McAbs) have been produced against the cationic peroxidase from peanut suspension cell culture. Eight of these antibodies were found to be of the immunoglobulin (Ig)G1 subclass and two were of IgA subclass. A combination of competitive enzyme-linked immunosorbent assay, Western blotting analysis, and direct antigen-binding assay revealed that the antibodies are directed against four different epitopes on the cationic peroxidase and the McAbs can be subdivided into four groups. Only group A inhibits peroxidase activity. Group B and D bind equally well to the native and the denatured form of cationic peroxidase, whereas the remaining McAbs react with more or less reduced affinity to the denatured antigen. Group C probably recognizes a conformation-dependent epitope. All the McAbs cross react weakly with the anionic peanut peroxidase, suggesting a structural nonidentity as well as some similarity between these two peroxidase isozymes. Cross reactivities of these McAbs with peroxidases of various plant species were also demonstrated.  相似文献   

4.
A major cationic peroxidase had been isolated by CMC chromatography from protein isolate of suspension medium that had supported growth of cultured peanut cells. This major cationic peroxidase proved to be antigenically different from both the anionic and the minor cationic peroxidase. Affinity for Concanavalin A found earler for the anionic peroxidase could not be detected for the major cationic peroxidase. The carbohydrate content of the major cationic peroxidase is nearly 15%. The molecular mass of the overall molecule is close to 40,000. Amino acid analysis of the hydrolysate of this major peroxidase showed similarities to amino acids of the hydrolysates of the cationic horseradish peroxidases, but no immunological relatedness could be detected between the major peanut peroxidase and the horseradish peroxidase.  相似文献   

5.
Two isoperoxidases were detected in cowpea (Vigna unguiculata) leaves. Treatment of the primary leaves with 10mM salicylic acid increased the total peroxidase activity contributed by the anionic isoform. To isolate both the anionic and cationic peroxidases the leaf crude extract was loaded on a Superose 12 HR 10/30 column followed by chromatography on Mono-Q HR 5/5. Both enzymes were stable in a pH range from 5 to 7. The optimum-temperatures for the cationic and anionic peroxidase isoforms were, respectively, 20-30 degrees C and 30 degrees C. The dependence of guaiacol oxidation rate varying its concentration at constant H(2)O(2) concentration showed, for both enzymes, Michaelis-Menten-type kinetic. Apparent K(m)(s) were 0.8 and 4.8 microM for the cationic and anionic isoperoxidases, respectively.  相似文献   

6.
The need for peroxidase purification is stressed as a requirement for comparative studies on isoenzyme structure as well as for detailed investigations on biosynthesis. A single cationic protein possessing the major peroxidase activity was isolated from the medium in which peanut cells had grown. The antibodies raised against this pure protein were employed as a probe to study the site of synthesis of peroxidase in the cell as well as the proportion of total synthesized protein which was peroxidase. Structural studies on the purified isoenzymes suggest the presence of three gene loci for peroxidase in cultured peanut cells. The results are discussed together with potential assays for induction of this enzyme and the relationship to cell development.  相似文献   

7.
A 5% increase of Ca2+ content of the incubation medium for cultured peanut ( Arachis hypogaea L.) cells caused a rise of peroxidase (EC 1.11.1.7) activity in the medium, which could be abolished by the addition of the chelator EGTA [eth-yleneglycol-bis-(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid]. However, the determination of in vivo peroxidase synthesis in these cells showed that Ca2+ had a direct effect on the biosynthesis rather than on transport alone. This concept was re-enforced by the lack of effect by the ionophore A23187 on the transport. The Ca2+ content was 2 and 5 mol (mol protein−1) for the cationic and anionic peanut peroxidase, respectively. The latter is different from the value reported for the anionic peroxidase from horseradish.  相似文献   

8.
An enzyme preparation from suspension cultured tobacco cells oxidized IAA only in the presence of added cofactors, Mn2+ and 2,4-dichlorophenol, and showed two pH optima for the oxidation at pH 4·5 and 5·5. Effects of various phenolic compounds and metal ions on IAA oxidase activity were examined. The properties of seven peroxidase fractions separated by column chromatography on DEAE-cellulose and CM-Sephadex, were compared. The peroxidases were different in relative activity toward o-dianisidine and guaiacol. All the peroxidases catalysed IAA oxidation in the presence of added cofactors. The pH optima for guaiacol peroxidation were very similar among the seven isozymes, but the optima for IAA oxidation were different. The anionic and neutral fractions showed pH optima near pH 5·5, but the cationic isozymes showed optima near pH 4·5. With guaiacol as hydrogen donor, an anionic peroxidase (A-1) and a cationic peroxidase (C-4) were very different in H2O2 concentration requirements for their activity. Peroxidase A-1 was active at a wide range of H2O2 concentrations, while peroxidase C-4 showed a more restricted H2O2 requirement. Gel filtration and polyacrylamide gel studies indicated that the three cationic peroxidases have the same molecular weight.  相似文献   

9.
Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6 ± 1 × 10(7) M(-1) s(-1) at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7 ± 3 × 10(7) M(-1) s(-1) at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pK(a) of phenolic hydroxyl dissociation in tyrosine is ≈ 10.3, this infers a much lower rate constant, about 3 × 10(5) M(-1) s(-1), for the reaction between this alkoxyl radical and tyrosine at pH 7.4.  相似文献   

10.
3-(10'-Phenothiazinyl)propane-1-sulfonate (SPTZ) was shown to be a potent enhancer of anionic sweet potato peroxidase (aSPP)-induced chemiluminescence. The optimal conditions for aSPP-catalyzed oxidation of luminol were investigated by varying the concentrations of luminol, hydrogen peroxide, Tris, and SPTZ as well as the pH values of the reaction mixture. Addition of 4-morpholinopyridine (MORP) to the reaction mixture markedly increased the light intensity. Using SPTZ and MORP together enhanced the effect 265 times. The lower detection limit (LDL) of SPP was 0.09 pM, approximately in 10 times lower than that for the cationic isozyme c of horseradish peroxidase/4-iodophenol system. It was shown that aSPP in the presence of SPTZ produced a longer lasting chemiluminescent signal.  相似文献   

11.
A short distance migrating cationic peroxidase from Korean radish seeds (Raphanus sativus) was detected. Cationic peroxidase Cs was purified to apparent homogeneity and characterized. The molecular mass of the purified cationic peroxidase Cs was estimated to be about 44 kDa on SDS-PAGE. After reconstitution of apoperoxidase Cs with protohemin, the absorption spectra revealed a new peak in the Soret region around 400 nm, which is typical in a classical type III peroxidase family. The optimum pH of peroxidase activity for o-dianisidine oxidation was observed at pH 7.0. Kinetic studies revealed that the reconstituted cationic peroxidase Cs has Km values of 1.18 mM and of 1.27 mM for o-dianisidine and H2O2, respectively. The cationic peroxidase Cs showed the peroxidase activities for native substrates, such as coumaric acid, ferulic acid, and scopoletin. This result suggested that cationic peroxidase Cs plays an important role in plant cell wall formation during seed germination.  相似文献   

12.
The cationic peanut peroxidase has been studied in detail, not only with regard to its peptide structure, but also to the sites and role of the three moieties linked to it. Peanut peroxidase lends itself well to a close examination as a potential example for other plant peroxidase studies. It was the first plant peroxidase for which a 3-D structure was derived from crystals, with the glycans intact. Subsequent analysis of peroxidases structures from other plants have not shown great differences to that of the peanut peroxidase. As the period of proteomics follows on the era of genomics, the study of glycans has been brought back into focus. With the potential use of peroxidase as a polymerization agent for industry, there are some aspects of the overall structure that should be kept in mind for successful use of this enzyme. A variety of techniques are now available to assay for these structures/moieties and their roles. Peanut peroxidase data are reviewed in that light, as well as defining some true terms for isozymes. Because a high return of the enzyme in a pure form has been obtained from cultured cells in suspension culture, a brief review of this is also offered.  相似文献   

13.
The distribution of the stress-related anionic peroxidase in the course of cucumber (Cucumis sativus L.) seed germination was determined by tissue printing and immunoblotting. Of the three molecular forms of cucumber stress-related anionic peroxidase, the form PRX 1 was temporally accumulated in developing seedlings. Up to 6 d of germination PRX 1 was localized mainly in roots. As germination progressed, the immunoreactive PRX 1 signal was found in the transition zone between roots and stem, as well as in the lower epidermis of expanding cotyledons at the midrib. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
ABSTRACT:?

The cationic peanut peroxidase has been studied in detail, not only with regard to its peptide structure, but also to the sites and role of the three moieties linked to it. Peanut peroxidase lends itself well to a close examination as a potential example for other plant peroxidase studies. It was the first plant peroxidase for which a 3-D structure was derived from crystals, with the glycans intact. Subsequent analysis of peroxidases structures from other plants have not shown great differences to that of the peanut peroxidase. As the period of proteomics follows on the era of genomics, the study of glycans has been brought back into focus. With the potential use of peroxidase as a polymerization agent for industry, there are some aspects of the overall structure that should be kept in mind for successful use of this enzyme. A variety of techniques are now available to assay for these structures/ moieties and their roles. Peanut peroxidase data are reviewed in that light, as well as defining some true terms for isozymes. Because a high return of the enzyme in a pure form has been obtained from cultured cells in suspension culture, a brief review of this is also offered.  相似文献   

15.
The rate of oxidation of L-(-)-tyrosine by horseradish peroxidase compound 1 has been studied as a function of pH at 25 degrees C and ionic strength 0.11. Over the pH range of 3.20--11.23 major effects of three ionizations were observed. The pKa values of the phenolic (pKa = 10.10) and amino (pKa = 9.21) dissociations of tyrosine and a single enzyme ionization (pKa = 5.42) were determined from nonlinear least squares analysis of the log rate versus pH profile. It was noted that the less acidic form of the enzyme was most reactive; hence, the reaction is described as base catalyzed. The rate of tyrosine oxidation falls rapidly with the deprotonation of the phenolic group.  相似文献   

16.
The effect of order of reagent mixing in the absence and in the presence of catalase on the transient kinetics of indole-3-acetic acid (IAA) oxidation by dioxygen catalysed by horseradish peroxidase C and anionic tobacco peroxidase at neutral pH has been studied. The data suggest that haem-containing plant peroxidases are able to catalyse the reaction in the absence of exogenous hydroperoxide. The initiation proceeds via the formation of the ternary complex enzyme-->IAA-->oxygen responsible for IAA primary radical generation. The horseradish peroxidase-catalysed reaction is independent of catalase indicating a significant contribution of free radical processes into the overall mechanism. This is in contrast to the tobacco peroxidase-catalysed reaction where the peroxidase cycle plays an important role. The transient kinetics of IAA oxidation catalysed by tobacco peroxidase exhibits a biphasic character with the first phase affected by catalase. The first phase is therefore associated with the common peroxidase cycle while the second is ascribed to native enzyme interaction with skatole peroxy radicals yielding directly Compound II.  相似文献   

17.
Anionic sweet potato peroxidase (SPP; Ipomoea batatas) was shown to efficiently catalyse luminol oxidation by hydrogen peroxide, forming a long-term chemiluminescence (CL) signal. Like other anionic plant peroxidases, SPP is able to catalyse this enzymatic reaction efficiently in the absence of any enhancer. Maximum intensity produced in SPP-catalysed oxidation of luminol was detected at pH 7.8-7.9 to be lower than that characteristic of other peroxidases (8.4-8.6). Varying the concentrations of luminol, hydrogen peroxide and Tris buffer in the reaction medium, we determined favourable conditions for SPP catalysis (100 mmol/L Tris-HCl buffer, pH 7.8, containing 5 mmol/L hydrogen peroxide and 8 mmol/L luminol). The SPP detection limit in luminol oxidation was 1.0 x 10(-14) mol/L. High sensitivity in combination with the long-term CL signal and high stability is indicative of good promise for the application of SPP in CL enzyme immunoassay.  相似文献   

18.
Two monoclonal antibodies (46–12-C12 and 23–6-C12)raised against anionic peanut peroxidase were found to haveindependent epitope sites. These topographic sites were foundto be located within a tryptic glycopeptide (Atgp) from theanionic isozyme by both indirect and non-competive ELISA andWestern blotting. The Atgp has a Mr equal to 11 000 of which 70% is carbohydrateand the peptide is probably highly hydrophobic as determinedby its high RF (0.83) value and the amino acid composition.McAb 23–6-C12 recognized a contiguous epitope which encompassedalso the sole N-linked oligosaccharide on the anionic isozyme.That the monoclonal antibody also recognized the oligosaccharideon the -amylase, ß-glucosidase, acid phosphatase,and horse-radish peroxidase may be related to similarities insugars. Sugar removal from the Atgp or from the cross-reactivepeptide of enzymes caused loss of antibody affinity. The monoclonal antibody 46–12-C12 recognized specificallya conformational epitope near the region of the cysteine, tryptophaneand methionine residue on Atgp. Digestion of the anionic isozymeby trypsin resulted in a 40-fold loss of affinity with thismonoclonal antibody. Moreover, treatment of the Atgp with performicacid or trifluoromethane sulphonic acid caused a loss of affinitybetween the treated Atgp and this monoclonal antibody. Key words: Monoclonal antibodies, peanut, anionic peroxidase, glycopeptide, trypsin digest  相似文献   

19.
A kinetic study of o-dianisidine oxidation by hydrogen peroxide in the presence of horseradish peroxidase within the pH range of 3.7-9.0 has been carried out. It was shown that the reaction of o-dianisidine peroxidase oxidation obeys the Michaelis--Menten kinetics; the kcat and Km values within the pH range used were determined. The optimum of peroxidase catalytic activity during o-dianisidine oxidation was observed at pH 5.0-6.0. The kinetic pattern of the reaction is discussed. It was demonstrated that deprotonation of the group at pK 6.5 decreases the kcat value 60 times. At pH greater than 8.0 an additional ionogenic group controls the enzyme activity.  相似文献   

20.
The human spleen ferritin--horseradish peroxidase conjugate (HRP--Fer) was synthesized by periodate oxidation of the enzyme carbohydrate fragment. The protein fraction containing 1-2 peroxidase molecules and characterized by kinetic homogeneity was obtained in the peroxidatic ortho-dianisidine (o-DA) oxidation reaction. Gel diffusion precipitation of HRP--Fer with peroxidases and ferritin antibodies was carried out. The precipitation confirms the retention by peroxidase and ferritin of their antigenic properties. The kinetics of peroxidatic oxidation of o-DA by the HRP--Fer conjugate was studied within the temperature interval of 15-37 degrees C. The value of catalytic constant for this reaction exceeds that for native peroxidase 1.75-fold. A kinetic analysis of thermal inactivation of peroxidase and its conjugate was performed within the temperature range of 40-65 degrees C. The effective rate constants of inactivation obtained from the first order equation are higher for HRP--Fer than for the native enzyme. The effect of pH on the rates of inactivation of HRP--Fer and the non-modified enzyme was studied at 50 degrees C. The enzyme and its conjugate were shown to stabilize in acid media. The HRP--Fer conjugate can be used as an effective tool in immunoenzymatic assays of ferritin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号