首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
PurposeTo investigate differences in image-to-image variations between full- and half-scan reconstruction on myocardial CT perfusion (CTP) study.MethodsUsing a cardiac phantom we performed ECG-gated myocardial CTP on a second-generation 320-multidetector CT volume scanner. The heart rate was set at 60 bpm; once per second for a total of 24 s were performed. CT images were acquired at 80- and 120 kVp and subjected to full- and half-scan reconstruction. On images acquired at the same slice level we then measured image-to-image variations, coefficients of variance (CV), and image noise.ResultsThe image-to-image variations with full- and half-scan reconstruction were 1.3 HU vs. 27.2 HU at 80 kVp (p < 0.001) and 0.70 HU vs. 9.3 HU at 120 kVp (p < 0.001) even though the mean HU value was almost the same for both reconstruction methods. The CV of 80- and 120-kVp images of the left ventricular cavity decreased by 0.16% and 0.17%, respectively, with full-scan reconstruction; with half-scan reconstruction it decreased by 3.34% and 2.30%, respectively. Compared with half-scan reconstruction, the image noise was reduced by 27.2% at 80 kVp and by 28.0% at 120 kVp with full-scan reconstruction.ConclusionMyocardial CTP with full-scan reconstruction substantially decreased image-to-image variations and provided accurate CT attenuation.  相似文献   

2.
PurposeWe aimed to thoroughly characterize image quality of a novel deep learning image reconstruction (DLIR), and investigate its potential for dose reduction in abdominal CT in comparison with filtered back-projection (FBP) and a partial model-based iterative reconstruction (ASiR-V).MethodsWe scanned a phantom at three dose levels: regular (7 mGy), low (3 mGy) and ultra-low (1 mGy). Images were reconstructed using DLIR (low, medium and high levels) and ASiR-V (0% = FBP, 50% and 100%). Noise and contrast-dependent spatial resolution were characterized by computing noise power spectra and target transfer functions, respectively. Detectability indexes of simulated acute appendicitis or colonic diverticulitis (low contrast), and calcium-containing urinary stones (high contrast) (|ΔHU| = 50 and 500, respectively) were calculated using the nonprewhitening with eye filter model observer.ResultsAt all dose levels, increasing DLIR and ASiR-V levels both markedly decreased noise magnitude compared with FBP, with DLIR low and medium maintaining noise texture overall. For both low- and high-contrast spatial resolution, DLIR not only maintained, but even slightly enhanced spatial resolution in comparison with FBP across all dose levels. Conversely, increasing ASiR-V impaired low-contrast spatial resolution compared with FBP. Overall, DLIR outperformed ASiR-V in all simulated clinical scenarios. For both low- and high-contrast diagnostic tasks, increasing DLIR substantially enhanced detectability at any dose and contrast levels for any simulated lesion size.ConclusionsUnlike ASiR-V, DLIR substantially reduces noise while maintaining noise texture and slightly enhancing spatial resolution overall. DLIR outperforms ASiR-V by enabling higher detectability of both low- and high-contrast simulated abdominal lesions across all investigated dose levels.  相似文献   

3.
PurposeTo develop a new automatic exposure control (AEC) technique based on the contrast-to-noise ratio (CNR) and provide constant lesion detectability.MethodsLesion detectability is affected by factors such as image noise, lesion contrast, and lesion size. We performed ROC analysis to assess the relationship between the optimum CNR and the lesion diameter at various levels of lesion contrast. We then developed a CNR-based AEC algorithm based on lesion detectability. Using CNR- based AEC algorithm, we performed visual evaluation of low-contrast detectability by 5 radiologists on a low-contrast module of the Catphan phantom, a contrast-difference level of 1.0% (difference in the CT number = 10 HU), and objects 3.0–9.0 mm in diameter.ResultsOn step-and-shoot scans the mean detection fraction with CNR-based AEC remained almost constant from 88 to 99 % regardless of the lesion size. We observed the same trend on helical scans, the mean detection fraction with CNR-based AEC exhibited a high score from 91 to 100%. Although CNR-based AEC maintains higher CNR for smaller size or lower contrast lesion, radiation dose on 3 mm lesion resulted in about 13 times larger than that of 9 mm lesion size. CTDIvol for the CNR-based AEC technique changed dramatically with the SDZ from 7.5 to 100.0 mGy for step-and-shoot scans and from 9.1 to 121.5 mGy for helical scans.ConclusionsFrom the viewpoint of ROC analysis-based CNR for lesion detection, CNR-based AEC potentially provide image quality advantages for clinical implementation.  相似文献   

4.
PurposeTo assess the quality of images obtained on a dual energy computed tomography (CT) scanner.MethodsImage quality was assessed on a 64 detector-row fast kVp-switching dual energy CT scanner (Revolution GSI, GE Medical Systems). The Catphan phantom and a low contrast resolution phantom were employed. Acquisitions were performed at eight different radiation dose levels that ranged from 9 mGy to 32 mGy. Virtual monochromatic spectral images (VMI) were reconstructed in the 40–140 keV range using all available kernels and iterative reconstruction (IR) at four different blending levels. Modulation Transfer Function (MTF) curves, image noise, image contrast, noise power spectrum and contrast to noise ratio were assessed.ResultsIn-plane spatial resolution at the 10% of the MTF curve was 0.60 mm−1. In-plane spatial resolution was not modified with VMI energy and IR blending level. Image noise was reduced from 16.6 at 9 mGy to 6.7 at 32 mGy, while peak frequency remained within 0.14 ± 0.01 mm−1. Image noise was reduced from 14.3 at IR 10% to 11.5 at IR 50% at a constant peak frequency. The lowest image noise and maximum peak frequency were recorded at 70 keV.ConclusionsOur results have shown how objective image quality is varied when different levels of radiation dose and different settings in IR are applied. These results provide CT operators an in depth understanding of the imaging performance characteristics in dual energy CT.  相似文献   

5.
PurposeTo investigate the effects of heart beat rate (bpm), vessel angulation and acquisition protocol on the estimation accuracy of calcified stenosis using a dual-energy CT scanner.MethodsA thorax semi-anthropomorphic phantom coupled with a motion simulator and a vessel phantom representing a 50% coronary artery calcified stenosis, were used. Electrocardiograph (ECG)-synchronized acquisitions were performed at different bpms. Acquisitions were performed using A, B, and C single-energy and D dual-energy protocols. Protocol A was prospective ECG-triggered axial and protocols B and C were retrospective single- and two-segment reconstruction ECG-gated helical acquisitions. Protocol D was prospective ECG-triggered axial acquisition. The vessel phantom was placed at two angulations relative to z-axis. Images were reconstructed using all available kernels with iterative reconstruction. Stenosis-percentage was estimated using the CT vendor’s vessel analysis tool. Effective dose (ED) was estimated using the dose-length product method.ResultsIn protocols A, B, and C, measured Stenosis-percentage increased with bpm. Stenosis-percentage estimate ranged from 56.8% at 40 bpm to 62.6% at 100 bpm. In protocol D, Stenosis-percentage ranged from 59.3% at 40 bpm to 54.8% at 80 bpm. Stenosis-percentage was overestimated on respect to the nominal value in most kernels. The detail kernel exhibited the highest accuracy. Stenosis-percentage was not affected by the vessel angulation. ED for protocols A, B, C, and D was 2.4 mSv, 5.1 mSv, 5.5 mSv, and 2.8 mSv, respectively.ConclusionsUse of the dual-energy cardiac CT examination protocol along with the detail kernel is recommended for a more accurate assessment of Stenosis-percentage.  相似文献   

6.
PurposeTo assess whether a deep learning image reconstruction algorithm (TrueFidelity) can preserve the image texture of conventional filtered back projection (FBP) at reduced dose levels attained by ASIR-V in chest CT.MethodsPhantom images were acquired using a clinical chest protocol (7.6 mGy) and two levels of dose reduction (60% and 80%). Images were reconstructed with FBP, ASIR-V (50% and 100% blending) and TrueFidelity (low (DL-L), medium (DL-M) and high (DL-H) strength). Noise (SD), noise power spectrum (NPS) and task-based transfer function (TTF) were calculated. Noise texture was quantitatively compared by computing root-mean-square deviations (RMSD) of NPS with respect to FBP. Four experienced readers performed a contrast-detail evaluation. The dose reducing potential of TrueFidelity compared to ASIR-V was assessed by fitting SD and contrast-detail as a function of dose.ResultsDL-M and DL-H reduced noise and NPS area compared to FBP and 50% ASIR-V, at all dose levels. At 7.6 mGy, NPS of ASIR-V 50/100% was shifted towards lower frequencies (fpeak = 0.22/0.13 mm−1, RMSD = 0.14/0.38), with respect to FBP (fpeak = 0.30 mm−1). Marginal difference was observed for TrueFidelity: fpeak = 0.33/0.30/0.30 mm−1 and RMSD = 0.03/0.04/0.07 for L/M/H strength. Values of TTF50% were independent of DL strength and higher compared to FBP and ASIR-V, at all dose and contrast levels. Contrast-detail was highest for DL-H at all doses. Compared to 50% ASIR-V, DL-H had an estimated dose reducing potential of 50% on average, without impairing noise, texture and detectability.ConclusionsTrueFidelity preserves the image texture of FBP, while outperforming ASIR-V in terms of noise, spatial resolution and detectability at lower doses.  相似文献   

7.
PurposeTo evaluate the impact of Automatic Exposure Control (AEC) on radiation dose and image quality in paediatric chest scans (MDCT), with or without iterative reconstruction (IR).MethodsThree anthropomorphic phantoms representing children aged one, five and 10-year-old were explored using AEC system (CARE Dose 4D) with five modulation strength options. For each phantom, six acquisitions were carried out: one with fixed mAs (without AEC) and five each with different modulation strength. Raw data were reconstructed with Filtered Back Projection (FBP) and with two distinct levels of IR using soft and strong kernels. Dose reduction and image quality indices (Noise, SNR, CNR) were measured in lung and soft tissues. Noise Power Spectrum (NPS) was evaluated with a Catphan 600 phantom.ResultsThe use of AEC produced a significant dose reduction (p < 0.01) for all anthropomorphic sizes employed. According to the modulation strength applied, dose delivered was reduced from 43% to 91%. This pattern led to significantly increased noise (p < 0.01) and reduced SNR and CNR (p < 0.01). However, IR was able to improve these indices. The use of AEC/IR preserved image quality indices with a lower dose delivered. Doses were reduced from 39% to 58% for the one-year-old phantom, from 46% to 63% for the five-year-old phantom, and from 58% to 74% for the 10-year-old phantom. In addition, AEC/IR changed the patterns of NPS curves in amplitude and in spatial frequency.ConclusionsIn chest paediatric MDCT, the use of AEC with IR allows one to obtain a significant dose reduction while maintaining constant image quality indices.  相似文献   

8.
PurposeThe purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA).Materials and methodsUsing a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions.ResultsIn prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation.ConclusionThe OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA.  相似文献   

9.
This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR?, VEO? and iDose4 (?)) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose4 levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose4 with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF50%). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose4, whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%–86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.  相似文献   

10.
ObjectiveThis study aims to assess low-contrast image quality using a low-contrast object specific contrast-to-noise ratio (CNRLO) analysis for iterative reconstruction (IR) computed tomography (CT) images.MethodsA phantom composed of low-contrast rods placed in a uniform material was used in this study. Images were reconstructed using filtered back projection (FBP) and IR (Adaptive Iterative Dose Reduction 3D). Scans were performed at six dose levels: 1.0, 1.8, 3.1, 4.6, 7.1 and 13.3 mGy. Objective image quality was assessed by comparing CNRLO with CNR using a human observer test.ResultsCompared with FBP, IR yielded increased CNR at the same dose levels. The results of CNRLO and observer tests showed similarities or only marginal differences between FBP and IR at the same dose levels. The coefficient of determination for CNRLO was significantly better (R2 = 0.86) than that of CNR (R2 = 0.47).ConclusionFor IR, CNRLO could potentially serve as an objective index reflective of a human observer assessment. The results of CNRLO test indicated that the IR algorithm was not superior to FBP in terms of low-contrast detectability at the same radiation doses.  相似文献   

11.
PurposeTo assess the impact of iterative reconstructions on image quality and detectability of focal liver lesions in low-energy monochromatic images from a Fast kV-Switching Dual Energy CT (KVSCT) platform.MethodsAcquisitions on an image-quality phantom were performed using a KVSCT for three dose levels (CTDIvol:12.72/10.76/8.79 mGy). Raw data were reconstructed for five energy levels (40/50/60/70/80 keV) using Filtered Back Projection (FBP) and four levels of ASIR (ASIR30/ASIR50/ASIR70/ASIR100). Noise power spectrum (NPS) and task-based transfer function (TTF) were measured before computing a Detectability index (d′) to model the detection task of liver metastasis (LM) and hepatocellular carcinoma (HCC) as function of keV.ResultsFrom 40 to 70 keV, noise-magnitude was reduced on average by −68% ± 1% with FBP; −61% ± 3% with ASIR50 and −52% ± 6% with ASIR100. The mean spatial frequency of the NPS decreased when the energy level decreased and the iterative level increased. TTF values at 50% decreased as the energy level increased and as the percentage of ASIR increased. The detectability of both lesions increased with increasing dose level and percentage of ASIR. For the LM, d′ peaked at 70 keV for all reconstruction types, except for ASIR70 at 12.72 mGy and ASIR100, where d' peaked at 50 keV. For HCC, d’ peaked at 60 keV for FBP and ASIR30 but peaked at 50 keV for ASIR50, ASIR70 and ASIR100.ConclusionsUsing percentage of ASIR above 50% at low-energy monochromatic images could limit the increase of noise-magnitude, benefit from spatial resolution improvement and hence enhance detectability of subtle low contrast focal liver lesions such as HCC.  相似文献   

12.
PurposeWe used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT.MethodsUsing a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors.ResultsThe mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p < 0.01).ConclusionCompared to adults, the surface and center dose for pediatric patients is almost the same despite a decrease in the tube voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning.  相似文献   

13.
PurposeTo compare computed tomography (CT) image properties between a vendor-independent image-based noise reduction technique, Image-space Noise Reduction (iNoir) and a hybrid-type iterative reconstruction technique, Adaptive Statistical Iterative Reconstruction (ASIR).MethodsA cylindrical water phantom, corresponding to pediatric body size, containing soft-tissue-equivalent rod and 12-mg iodine/ml rod was scanned at size-specific dose estimates of 8.4 and 16.7 mGy. For assessments of image quality and noise texture change, task-based system performance function (SPF) and peak frequency difference (PFD) were compared, respectively, among filtered back projection (FBP), IR image with 50%-blending rate (50%ASIR), 100%ASIR, 50%iNoir, and 100%iNoir. Human observer test for pediatric CT images was performed by radiologists.ResultsFor the soft-tissue contrast, SPF2 of 100%iNoir was the highest. The average SPF2 between 0.1 and 0.5 cycles/mm for 100%iNoir increased by approximately 70% compared with FBP, while ASIR indicted slight increases in the frequency region of >0.2 cycles/mm. For the iodine contrast, 100%iNoir indicated highest values at the spatial frequencies corresponding pediatric artery diameters. The PFDs of iNoir were negligible and lower than that of ASIR. The results of human observer test supported results of SPF2 and PFD.ConclusionsCompared with ASIR, iNoir provided better image quality for pediatric abdominal CT without compromising noise texture change.  相似文献   

14.
15.

Purpose

To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D).

Methods

Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients'' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product.

Results

Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv.

Conclusion

Compared with standard AIDR3D and FBP, CTCA with ATCM and strong AIDR3D could significantly improve both quantitative and qualitative image quality.  相似文献   

16.
PurposeTo estimate the mean glandular dose of contrast enhanced digital mammography, using the EGSnrc Monte Carlo code and female adult voxel phantom.MethodsAutomatic exposure control of full field digital mammography system was used for the selection of the X-ray spectrum and the exposure settings for dual energy imaging. Measurements of the air-kerma and of the half value layers were performed and a Monte Carlo simulation of the digital mammography system was used to compute the mean glandular dose, for breast phantoms of various thicknesses, glandularities and for different X-ray spectra (low and high energy).ResultsFor breast phantoms of 2.0–8.0 cm thick and 0.1–100% glandular fraction, CC view acquisition, from AEC settings, can result in a mean glandular dose of 0.450 ± 0.022 mGy −2.575 ± 0.033 mGy for low energy images and 0.061 ± 0.021 mGy – 0.232 ± 0.033 mGy for high energy images. In MLO view acquisition mean glandular dose values ranged between 0.488 ± 0.007 mGy – 2.080 ± 0.021 mGy for low energy images and 0.065 ± 0.012 mGy – 0.215 ± 0.010 mGy for high energy images.ConclusionThe low kV part of contrast enhanced digital mammography is the main contributor to total mean glandular breast dose. The results of this study can be used to provide an estimated mean glandular dose for individual cases.  相似文献   

17.
Aim of the study was to evaluate the performance of a tube current modulation (TCM) system (SUREExposure 3D).On a 64 detector-row CT scanner (Aquilion 64, Toshiba), performance of fixed tube current, longitudinal TCM, and volumetric TCM acquisitions were assessed. A homogeneous cone-shaped phantom and an anthropomorphic phantom were used. Tube current and noise profiles were quantitatively analysed by box and whisker plots when phantom size, acquisition, and reconstruction parameters were varied.At similar median noise, fixed tube current scanning showed a noise range of 16.8–38.3 HU, while longitudinal TCM showed a range of 19.4–31.4 HU and volumetric TCM showed an even lower range of 20.7–28.7 HU. When acquisitions resulting in similar image quality (noise) were compared, the use of volumetric compared to longitudinal TCM resulted in a variable radiation dose reduction up to 6.6%.In conclusion, SUREExposure 3D resulted in more uniform image quality at a lower dose. Volumetric TCM shows improved results over longitudinal TCM.  相似文献   

18.
ObjectiveTo evaluate the effect of cone-beam computed tomography (CBCT) image acquisition protocols on image quality, lesion detection, delineation, and patient dose.Methods100-patients and a CTDI phantom combined with an electron density phantom were examined using four different CBCT-image acquisition protocols during image-guided transarterial chemoembolization (TACE). Protocol-1 (time: 6 s, tube rotation: 360°), protocol-2 (5 s, 300°), protocol-3 (4 s, 240°) and protocol-4 (3 s, 180°) were used. The protocols were first investigated using a phantom. The protocols that were found to be clinically appropriate in terms of image quality and radiation dose were then assessed on patients. A higher radiation dose and/or a poor image quality were inappropriate for the patient imaging. Patient dose (patient-entrance dose and dose-area product), image quality (Hounsfield Unit, noise, signal-to-noise ratio and contrast-to-noise ratio), and lesion delineation (tumor-liver contrast) were assessed and compared using appropriate statistical tests. Lesion detectability, sensitivity, and predictive values were estimated for CBCT-image data using pre-treatment patient magnetic resonance imaging.ResultsThe estimated patient dose showed no statistical significance (p > 0.05) between protocols-2 and -3; the assessed image quality between these protocols manifested insignificant difference (p > 0.05). Two other phantom protocols were not considered for patient imaging due to significantly higher dose (protocols-1) and poor image quality (protocol-4). Lesion delineation and detection were insignificant (p > 0.05) between protocols-2 and -3. Lesion sensitivities generated were 81–89% (protocol-2) and 81–85% (protocol-3) for different lesion types.ConclusionData acquisition using protocols-2 and -3 provided good image quality, lesion detection and delineation with acceptable patient dose during CBCT-imaging mainly due to similar frame numbers acquired.  相似文献   

19.
PurposeA novel fast kilovoltage switching dual-energy CT with deep learning [Deep learning based-spectral CT (DL-Spectral CT)], which generates a complete sinogram for each kilovolt using deep learning views that complement the measured views at each energy, was commercialized in 2020. The purpose of this study was to evaluate the accuracy of CT numbers in virtual monochromatic images (VMIs) and iodine quantifications at various radiation doses using DL-Spectral CT.Materials and methodsTwo multi-energy phantoms (large and small) using several rods representing different materials (iodine, calcium, blood, and adipose) were scanned by DL-Spectral CT at varying radiation doses. Images were reconstructed using three reconstruction parameters (body, lung, bone). The absolute percentage errors (APEs) for CT numbers on VMIs at 50, 70, and 100 keV and iodine quantification were compared among different radiation dose protocols.ResultsThe APEs of the CT numbers on VMIs were <15% in both the large and small phantoms, except at the minimum dose in the large phantom. There were no significant differences among radiation dose protocols in computed tomography dose index volumes of 12.3 mGy or larger. The accuracy of iodine quantification provided by the body parameter was significantly better than those obtained with the lung and bone parameters. Increasing the radiation dose did not always improve the accuracy of iodine quantification, regardless of the reconstruction parameter and phantom size.ConclusionThe accuracy of iodine quantification and CT numbers on VMIs in DL-Spectral CT was not affected by the radiation dose, except for an extremely low radiation dose for body size.  相似文献   

20.
PurposeTo compare the noise and accuracy on images of the whole porcine liver acquired with iterative reconstruction (IMR, Philips Healthcare, Cleveland, OH, USA) and filtered back projection (FBP) methods.Materials and methodsWe used non-enhanced porcine liver to simulate the human liver and acquired it 100 times to obtain the average FBP value as the ground-truth. The mean and the standard deviation (“inter-scan SD”) of the pixel values on the 100 image acquisitions were calculated for FBP and for three levels of IMR (L1, L2, and L3). We also calculated the noise power spectrum (NPS) and the normalized NPS for the 100 image acquisitions.ResultsThe spatial SD for the porcine liver parenchyma on these slices was 9.92, 4.37, 3.63, and 2.30 Hounsfield units with FBP, IMR-L1, IMR-L2, and IMR-L3, respectively. The detectability of small faint features was better on single IMR than single FBP images. The inter-scan SD value for IMR-L3 images was 53% larger at the liver edges than at the liver parenchyma; it was only 10% larger on FBP images. Assessment of the normalized NPS showed that the noise on IMR images was comprised primarily of low-frequency components.ConclusionIMR images yield the same structure informations as FBP images and image accuracy is maintained. On level 3 IMR images the image noise is more strongly suppressed than on IMR images of the other levels and on FBP images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号